

Database Drivers 2

COPYRIGHT 1994- 2003 SoftVelocity Incorporated. All rights reserved.

This publication is protected by copyright and all rights are reserved by SoftVelocity
Incorporated. It may not, in whole or part, be copied, photocopied, reproduced, translated,
or reduced to any electronic medium or machine-readable form without prior consent, in
writing, from SoftVelocity Incorporated.

This publication supports Clarion. It is possible that it may contain technical or
typographical errors. SoftVelocity Incorporated provides this publication “as is,” without
warranty of any kind, either expressed or implied.

SoftVelocity Incorporated
2769 East Atlantic Blvd.
Pompano Beach, Florida 33062
(954) 785-4555
www.softvelocity.com

Trademark Acknowledgements:

SoftVelocity is a trademark of SoftVelocity Incorporated.
Clarion is a trademark of SoftVelocity Incorporated.
Btrieve is a registered trademark of Pervasive Software.
Microsoft , Windows , and Visual Basic are registered trademarks of Microsoft Corporation.
All other products and company names are trademarks of their respective owners.

Printed in the United States of America (0903)

Contents and Introduction 3

Contents:
Database Drivers...5

Overview - Data Independence ...5
Choosing the Right Database Driver...6
Common Database Driver Features..7
Driver Strings...10
ISAM File Drivers...11

ASCII File Driver ...11
Basic Database Driver ..21
Btrieve Database Driver..31
Clarion Database Driver..49
Clipper Database Driver..59
dBaseIII Database Driver..75
dBaseIV Database Driver ...91
DOS Database Driver ...109
FoxPro / FoxBase Database Driver ..117
TopSpeed Database Driver ..133

All SQL Accelerators (Drivers) ..153
General Information for all SQL Drivers..153
Using SQL Tables in your Clarion Application..154
SQL Driver Behavior ...157
Performance Considerations ..159
Date and Time Column Considerations..161
SQL Batch Transaction Processing..162
Using Embedded SQL ..163
Runtime SQL Properties for Views using SQL Drivers...169
VIEW support for aggregate functions..171
Debugging Your SQL Application ...173
SQL Accelerator Drivers:Supported Commands and Attributes...............................175
CHECKFORNULL...180
SQL Driver Strings(Generic) ...181
SQL Driver Properties(Generic)..195
ADO Database Driver ...208
MSSQL Accelerator ..212
ODBC Accelerator Driver..238
Oracle Accelerator ..256
Scalable SQL Accelerator Driver ..285
SQLAnywhere Accelerator..295

Index: ...311

Database Drivers 4

Contents and Introduction 5

Database Drivers
Overview - Data Independence
Clarion achieves database independence with its built-in driver technology, which lets you access
data from virtually any file system using the same set of Clarion language commands. Many file
drivers are available and more are being added.

Before you can use a database driver, it must be registered. The database drivers
in this package are pre-registered. See the User's Guide--Configuring the
Environment for more information on registering add-on database drivers.

The Clarion language commands for accessing data are the same regardless of the file system
you use; simply choose the appropriate file driver from the drop-down list in your Data Dictionary,
then don't worry about it. The file driver translates the Clarion commands to the chosen file
system's native format. The drivers read and write in the file system's native format without
temporary files or import/export routines.

Database Drivers 6

Choosing the Right Database Driver
Choosing a file system is an important decision, and we encourage you to gather as much
information from as many good sources as you can to support your decision. Although the choice
of file systems is important, with Clarion, it is not irrevocable. If the file system you choose does
not live up to your expectations, you can change to one that does. For example, some developers
use the TopSpeed file system for project development, then switch to an SQL file system during
project implementation in order to postpone the expense of the SQL software and server
hardware until late in the development cycle.

Contents and Introduction 7

Common Database Driver Features
Importing File Definitions

For existing data, you can generally import file definitions into your Clarion data dictionary. We
strongly recommend importing file definitions whenever possible, because it reduces your
development time and effort, plus it results in fewer errors in file definitions. See The Dictionary
Editor in the User's Guide for more information on importing files.

Keys, Indexes, and Performance

Although you may define indexes within your Clarion data dictionary that do not exist within the
native file system, we do not recommend doing so because your application performance will
generally suffer. Instead, we recommend defining the required key or index with the native file
system's tools, then importing the file definition, including the key or index definitions, into your
Clarion data dictionary.

Sorting and Collating Sequences

By default, all SoftVelocity's database drivers sort using the ANSI collating sequence. Adding the
OEM attribute causes the driver to use the ASCII collating sequence.

Disk Caching and Data Integrity

Disk caching can interfere with the data integrity features of many file systems. By disk caching,
we mean any facility (for example SMARTDRV) that tells the database driver that a record was
written to the disk when in fact it was not.

To improve performance, disk-caching facilities typically accumulate several records at a time in
RAM then write them to disk all at once. While this does improve performance, it can result in
corrupt data files if the system fails (due to a power outage, etc.) before the records are written to
disk.

A reliable Uninterruptible Power Supply (UPS) can drastically reduce this risk. Therefore, we
generally recommend no disk caching, but if you must cache, then be sure to use a reliable UPS.

Database Driver System-wide Logging

All of SoftVelocity's database drivers can create a log file documenting Clarion I/O statements
they process, and the SQL Accelerator drivers can log the corresponding SQL statements, and
the SQL return codes.

Database Drivers 8

You can generate system-wide logs and on-demand logs (conditional logging based on your
program logic).

A utility/example application is included--Trace.EXE. A compiled version is installed in the ..\bin
directory and the source .APP is installed in the \Examples\Resource\Trace directory. This utility
allows you to easily set tracing options for each file driver and for the VIEW engine. These setting
are stored in WIN.INI.

For system-wide logging, you can add the following to your WIN.INI file:
[filedriver]
Profile=[1|0]
Details=[1|0]
Trace=[1|0]
TraceFile=[Pathname]

where filedriver is the database driver name (for example [MS-SQL]). Neither the INI section
name [filedriver] nor the INI entry names are case sensitive.

Profile=1 tells the driver to include the Clarion I/O statements in the log file; Profile=0 tells the
driver to omit Clarion I/O statements. The Profile switch must be turned on for the Details switch
to have any effect.

Details=1 tells the driver to include record buffer contents in the log file; however, if the file is
encrypted, you must turn on both the Details switch and the ALLOWDETAILS switch to log record
buffer contents (see ALLOWDETAILS). Details=0 tells the driver to omit record buffer contents.
The Profile switch must be turned on for the Details switch to have any effect.

Trace=1 tells the driver to include all calls to the back-end DBMS, including the generated SQL
statements and their return codes, in the log file. Trace=0 omits these calls. The Trace switch
generally generates log information that helps to debug the SQL drivers, but is normally not
particularly useful to the developer.

TraceFile names the log file to write to. If TraceFile is omitted the driver writes the log to driver.log
in the current directory. Pathname is the full pathname or the filename of the log file to write. If no
path is specified, the driver writes the specified file to the current directory.

Logging opens the named log file for exclusive access. If the file exists, the new log data is
appended to the file.

Contents and Introduction 9

On Demand Logging

For on-demand logging you can use property syntax within your program to conditionally turn
various levels of logging on and off. The logging is effective for the target table and any view for
which the target table is the primary table.
file{PROP:Profile}=Pathname !Turns Clarion I/O logging on
file{PROP:Profile}='' !Turns Clarion I/O logging off
PathName = file{PROP:Profile} !Queries the name of the log file
file{PROP:Log}=string !Writes the string to the log file
file{PROP:Details}=1 !Turns Record Buffer logging on
fFile{PROP:Details}=0 !Turns Record Buffer logging off

where Pathname is the full pathname or the filename of the log file to create. If you do not specify
a path, the driver writes the log file to the current directory.

You can also accomplish on demand logging with a SEND() command and the LOGFILE driver
string.

Database Drivers 10

Driver Strings
There are switches or "driver strings" you can set to control the way your application creates,
reads, and writes files with a specific driver. Driver strings are simply messages or parameters
that are sent to the file driver at run-time to control its behavior. The various driver specific driver
strings are described in the Driver Strings section for each driver.

Driver strings are sent in three ways: with the OPEN or CREATE statement, with the SEND
procedure, and with property syntax.

DRIVER('Driver', '/DriverString = value')

The OPEN(file) and CREATE(file) statements send any driver strings specified in the FILE's
DRIVER attribute. OPEN sends the string immediately before the file is opened. You may specify
these driver strings with a hand coded FILE declaration (see DRIVER in the Language Reference
for more information) or in the Data Dictionary (Driver Options field in the File Properties dialog--
see File Properties). In either case, you must prepend a forward slash (/) to the driver string. For
example:
MyFile FILE,DRIVER('TopSpeed','/LOGFILE=MyFile.Log')
CODE
OPEN(MyFile) !sends the LOGFILE driver string

SEND(file, 'DriverString')

The SEND function sends a driver string to the file driver at any time, including before the file is
opened. SEND functions take two forms--with an equal sign to change the value of the switch,
and without an equal sign to return the value of the switch. With SEND, the ISAM drivers do not
require the preceeding forward slash, but the SQL drivers do require it. For example:
SEND(MyFile,'LOGFILE='&MyLogFile) !Set the logfile
MyLogFile=SEND(MySQLFile,'/LOGFILE') !Query the logfile
OldLogFile=SEND(MyFile,'LOGFILE='&NewLogFile) !Set & Query the logfile

file{PROP:DriverString}

Property syntax is an alternative to the SEND function. With property syntax you can send a
driver string to the file driver any time after the file is opened. With property syntax, the driver
string does not require the preceeding forward slash. For example:
MyLogFile = 'MyFile.Log'
MyFile{PROP:Profile}=MyLogFile !Set the logfile
MyLogFile = MyFile{PROP:Profile} !Query the logfile

ASCII File Driver 11

ISAM File Drivers
ASCII File Driver
ASCII:Specifications

The ASCII driver reads and writes standard ASCII files without field delimiters. This is often used
for mainframe data import/export with an ASCII flat-file. By default, a carriage-return/line-feed
delimits records. The ASCII driver does not support keys.

Files: C60ASCXL.LIB Windows Static Link Library

 C60ASCX.LIB Windows Export Library

 C60ASCX.DLL Windows Dynamic Link Library

Due to its lack of relational features and security (anyone can view and change an
ASCII file using Notepad), it's unlikely you'll use the ASCII driver to store large data
files. But it can help you create a text file viewer--use it to open a file, and read it in
to a multi-line edit or list box control!

ASCII:Supported Data Types
STRING
GROUP

ASCII:File Specifications/Maximums
File Size: 4 GB
Records per File: 4,294,967,295 bytes
Record Size: 65,520 bytes
Field Size: 65,520 bytes
Fields per Record: 65,520
Keys/Indexes per File: n/a
Key Size: n/a
Memo fields per File: n/a
Memo Field Size: n/a
Open Data Files: Operating system dependent

Database Drivers 12

ASCII:Driver Strings

There are switches or "driver strings" you can set to control the way your application creates,
reads, and writes files with a specific driver. Driver strings are simply messages or parameters
that are sent to the file driver at run-time to control its behavior. See Common Driver Features--
Driver Strings for an overview of these runtime Database Driver switches and parameters.

Some driver strings have no effect after the file is open, so no SEND function
syntax is listed for those strings. However, the SEND function syntax to return the
value of the switch is listed for all driver strings.

The ASCII Driver supports the following Driver Strings:

CLIP

 DRIVER('ASCII', '/CLIP = on | off')

 [Clip" =] SEND(file, 'CLIP [= on | off]')

The driver automatically removes trailing spaces from a record before writing it to file. Conversely,
the driver automatically expands the clipped records with spaces when read. To disable this
feature, set CLIP to OFF. The default is ON. SEND returns the CLIP setting (ON or OFF) in the
form of a STRING(3).

CTRLZISEOF

 DRIVER('ASCII', '/CTRLZISEOF = on | off')

 [EOF" =] SEND(file, 'CTRLZISEOF [= on | off]')

By default (CTRLZISEOF=on) the file driver assumes that any Ctrl-Z characters in the file indicate
the end of file. To disable this feature set CTRLZISEOF=off. SEND returns the CTRLZISEOF
setting in a STRING(3).

ASCII File Driver 13

ENDOFRECORD

 DRIVER('ASCII', '/ENDOFRECORD = n [,m]')

 [EOR" =] SEND(file, 'ENDOFRECORD [= n [,m]]')

Specifies the end of record delimiter.

 n represents the number of characters that make up the end-of-record delimiter.

m represents the ASCII code(s) for the end-of-record delimiter, separated by commas. The
default is 2,13,10, indicating 2 characters mark the end-of-record, namely, carriage return (13)
and line feed (10). SEND returns the end of record delimiter.

Mainframes and MACs frequently use just a carriage return to delimit records.
You can use ENDOFRECORD=1,13 to read these files. UNIX/Linux files frequently
terminate with just a line feed and can be read using ENDOFRECORD=1,10

FILEBUFFERS

 DRIVER('ASCII', '/FILEBUFFERS = n')

 [Buffers" =] SEND(file, 'FILEBUFFERS [= n]')

 Sets the size of the buffer used to read and write to the file, where the buffer size is (n * 512
bytes). Use the /FILEBUFFERS driver string to increase the buffer size if access is slow.
Maximum buffer size is 4,294,967,264. SEND returns the size of the buffer in bytes.

The default buffer size for files opened denying write access to other users is the
larger of 1024 or (2 * record size), and the larger of 512 or record size for all other
open modes.

Database Drivers 14

TAB

 DRIVER('ASCII', '/TAB = n')

 [Spaces" =] SEND(file, 'TAB [= n]')

Sets or queries TAB/SPACE expansion. The ASCII driver expands TABs (ASCII character 9) to
spaces when reading. The value indicates the number of spaces with which to replace the tab,
subject to the guidelines below. The default value is 8. SEND returns the number of spaces which
replace the tab character.

If n > 0, spaces replace each tab until the character pointer moves to the next multiple of n. For
example, with the default of 8, if the TAB character is the third character in the record, 6 spaces
replace the TAB.

If n = 0, the driver removes tabs without replacement.

If n < 0, the driver removes tabs with the positive value of n spaces. For example, "TAB=-4"
causes 4 spaces to replace every tab, regardless of the position of the tab in the record.

If n = -100, tabs remain as tabs; the driver does not replace them with spaces.

QUICKSCAN

 DRIVER('ASCII', '/QUICKSCAN = on | off')

 [QScan" =] SEND(file, 'QUICKSCAN [= on | off]')

Specifies buffered access behavior. The ASCII driver reads a buffer at a time (not a record),
allowing faster access. In a multi-user environment these buffers are not 100% trustworthy for
subsequent access, because another user may change the file between accesses. As a
safeguard, the driver rereads the buffers before each record access. To disable the reread, set
QUICKSCAN to ON. The default is ON for files opened denying write access to other users, and
OFF for all other open modes. SEND returns the Quickscan setting (ON or OFF) in the form of a
STRING(3).

ASCII File Driver 15

ASCII:Supported Commands and Attributes

File Attributes Supported

 CREATE Y

 DRIVER(filetype [,driver string]) Y

 NAME Y

 ENCRYPT N

 OWNER(password) N

 RECLAIM N

 PRE(prefix) Y

 BINDABLE Y

 THREAD Y4

 EXTERNAL(member) Y

 DLL([flag]) Y

 OEM Y
File Structures Supported

INDEX N

 KEY N

 MEMO N

 BLOB N

 RECORD Y
Index, Key, Memo Attributes Supported

 BINARY N

 DUP N

 NOCASE N

 OPT N

 PRIMARY N

Database Drivers 16

 NAME N

 Ascending Components N

 Descending Components N

 Mixed Components N
Field Attributes Supported

 DIM Y

 OVER Y

 NAME Y
File Procedures Supported

 BOF(file) N

 BUFFER(file) N

 BUILD(file) N

 BUILD(key) N

 BUILD(index) N

 BUILD(index, components) N

 BUILD(index, components, filter) N

 BYTES(file) Y

 CLOSE(file) Y

 COPY(file, new file) Y

 CREATE(file) Y

 DUPLICATE(file) N

 DUPLICATE(key) N

 EMPTY(file) Y

 EOF(file) Y

 FLUSH(file) N

 LOCK(file) Y

 NAME(label) Y

ASCII File Driver 17

 OPEN(file, access mode) Y

 PACK(file) N

 POINTER(file) Y2

 POINTER(key) N

 POSITION(file) Y3

 POSITION(key) N

 RECORDS(file) N

 RECORDS(key) N

 REMOVE(file) Y

 RENAME(file, new file) Y

 SEND(file, message) Y

 SHARE(file, access mode) Y

 STATUS(file) Y

 STREAM(file) N

 UNLOCK(file) Y

Record Access Supported

 ADD(file) Y

 ADD(file, length) N

 APPEND(file) Y

 APPEND(file, length) N

 DELETE(file) N

 GET(file,key) N

 GET(file, filepointer) Y

 GET(file, filepointer, length) N

 GET(key, keypointer) N

 HOLD(file) N

 NEXT(file) Y

Database Drivers 18

 NOMEMO(file) N

 PREVIOUS(file) N

 PUT(file) Y1

 PUT(file, filepointer) Y1

 PUT(file, filepointer, length) N

 RELEASE(file) N

 REGET(file,string) Y

 REGET(key,string) N

 RESET(file,string) Y

 RESET(key,string) N

 SET(file) Y

 SET(file, key) N

 SET(file, filepointer) Y

 SET(key) N

 SET(key, key) N

 SET(key, keypointer) N

 SET(key, key, filepointer) N

 SKIP(file, count) N

 WATCH(file) N
Transaction Processing Supported

 LOGOUT(timeout, file, ..., file) N

 COMMIT N

 ROLLBACK N
Null Data Processing Supported

 NULL(field) N

 SETNULL(field) N

 SETNONNULL(field) N

ASCII File Driver 19

Notes
1 When using PUT() with this driver you should take care to PUT back the same number of

characters that were read. If you PUT back more characters than were read, then the
"extra" characters will overwrite the first part of the subsequent record. If you PUT back
fewer characters than were read, then only the first part of the retrieved record is
overwritten, while the last part of the retrieved record remains as it was prior to the PUT().

2 POINTER() returns the relative byte position within the file.

3 POSITION(file) returns a STRING(4).

4 THREADed files consume additional file handles for each thread that accesses the file.

Database Drivers 20

BASIC File Driver 21

Basic Database Driver
Basic:Specifications

The BASIC file driver reads and writes comma-delimited ASCII files. By default, quotes (" ")
surround strings, commas delimit fields, and a carriage-return/line-feed delimits records. The
original BASIC programming language defined this file format. The Basic driver does not support
keys or backward file processing (thus Basic files are not a good choice for random access
processing).

The Basic file format provides a good choice for a common file format for sharing
data with spreadsheet programs. A common file extension used for these files is
*.CSV, which stands for "comma separated values."

Files: C60BASXL.LIB Windows Static Link Library (32-bit)

 C60BASX.LIB Windows Export Library (32-bit)

 C60BASX.DLL Windows Dynamic Link Library (32-bit)

Basic:Supported Data Types
BYTE DECIMAL
SHORT PDECIMAL
USHORT STRING
LONG CSTRING
ULONG PSTRING
SREAL DATE
REAL TIME
BFLOAT4 GROUP
BFLOAT8

Basic:File Specifications/Maximums
File Size: 4 GB
Records per File: 4,294,967,295 bytes
Record Size: 65,520 bytes
Field Size: 65,520 bytes
Fields per Record: 65,520
Keys/Indexes per File: n/a
Key Size: n/a
Memo fields per File: 0
Memo Field Size: n/a
Open Data Files: Operating system dependent

Database Drivers 22

Basic:Driver Strings

There are switches or "driver strings" you can set to control the way your application creates,
reads, and writes files with a specific driver. Driver strings are simply messages or parameters
that are sent to the file driver at run-time to control its behavior. See Common Driver Features--
Driver Strings for an overview of these runtime Database Driver switches and parameters.

Some driver strings have no effect after the file is open, so no SEND function
syntax is listed for those strings. However, the SEND function syntax to return the
value of the switch is listed for all driver strings.

The Basic Driver supports the following Driver Strings:

ALWAYSQUOTE

 DRIVER('BASIC', '/ALWAYSQUOTE = on | off')

 [QScan" =] SEND(file, 'ALWAYSQUOTE [= on | off]')

For compatibility with Basic format data files created by products that do not place string values in
quotes, set ALWAYSQUOTE to OFF.

When the contents of a string field includes the comma or quote character(s), and
ALWAYSQUOTE is off, the Basic driver automatically places quotes around the string when
writing to file. This also applies to delimiter characters specified with FIELDDELIMITER, or
COMMA. For example, with the defaults in use and ALWAYSQUOTE off, a STRING field
containing the value 1313 Mockingbird Lane, Apt. 33 is automatically stored as: "1313
Mockingbird Lane, Apt. 33"

SEND returns the ALWAYSQUOTE setting (ON or OFF) in the form of a STRING(3).

COMMA

 DRIVER('BASIC', /COMMA = n')

 [Comma" =] SEND(file, 'COMMA [= n]')

Specifies a single character field separator.

n represents the ANSI code for the field separator character. The default is 44, which is
equivalent to "/FIELDDELIMITER=1,44."

SEND returns the ASCII code for the field separator character.

BASIC File Driver 23

CTRLZISEOF

 DRIVER('BASIC', '/CTRLZISEOF = on | off')

 [EOF" =] SEND(file, 'CTRLZISEOF [= on | off]')

By default (CTRLZISEOF=on) the file driver assumes that any Ctrl-Z characters in the file indicate
the end of file. To disable this feature set CTRLZISEOF=off. SEND returns the CTRLZISEOF
setting in a STRING(3).

ENDOFRECORD

 DRIVER('BASIC', '/ENDOFRECORD = n [,m]')

 [EOR" =] SEND(file, 'ENDOFRECORD [= n [,m]]')

Specifies the end of record delimiter.

 n represents the number of characters that make up the end-of-record delimiter.

m represents the ANSI code(s) for the end-of-record delimiter, separated by commas. The default
is 2,13,10, indicating 2 characters mark the end-of-record, namely, carriage return (13) and line
feed (10). SEND returns the end of record delimiter.

Mainframes frequently use just a carriage return to delimit records. You can use
ENDOFRECORD to read these files.

ENDOFRECORDINQUOTE

 DRIVER('BASIC', '/ENDOFRECORDINQUOTE = on | off')

 [EORQuote" =] SEND(file, 'ENDOFRECORDINQUOTE [= on | off]')

By default (ENDOFRECORDINQUOTE=ON) the file driver does not recognize an end-of-record
marker that is within a quoted string. To force End-Of-Record markers to always terminate a
record, set ENDOFRECORDINQUOTE=OFF. SEND returns the ENDOFRECORDINQUOTE
setting (ON or OFF) in the form of a STRING(3).

Database Drivers 24

FIELDDELIMITER

 DRIVER('BASIC', '/FIELDDELIMITER = n [,m]')

 [Limiter" =] SEND(file, 'FIELDDELIMITER [= n [,m]]')

Specifies the field separator. This is in addition to any string delimiter specified by the /QUOTE
driver string.

n represents the number of characters that make up the field separator.

m represents the ANSI code(s) for the field separator characters, separated by commas. The
default is 1,44 which indicates the comma character.

SEND returns the field delimiter character.

If both FIELDDELIMITER and COMMA are specified, the last specification prevails.

FILEBUFFERS

 DRIVER('BASIC', '/FILEBUFFERS = n')

 [Buffers" =] SEND(file, 'FILEBUFFERS [= n]')

 Sets the size of the buffer used to read and write to the file, where the buffer size is (n * 512
bytes). Use the /FILEBUFFERS driver string to increase the buffer size if access is slow.
Maximum buffer size is 4,294,967,264. SEND returns the size of the buffer in bytes.

The default buffer size for files opened denying write access to other users is the
larger of 1024 or (2 * record size), and the larger of 512 or record size for all other
open modes.

QUICKSCAN

 DRIVER('BASIC', '/QUICKSCAN = on | off')

 [QScan" =] SEND(file, 'QUICKSCAN [= on | off]')

BASIC File Driver 25

Specifies buffered access behavior. The ASCII driver reads a buffer at a time (not a record),
allowing faster access. In a multi-user environment these buffers are not 100% trustworthy for
subsequent access, because another user may change the file between accesses. As a
safeguard, the driver rereads the buffers before each record access. To disable the reread, set
QUICKSCAN to ON. The default is ON for files opened denying write access to other users, and
OFF for all other open modes. SEND returns the QUICKSCAN setting (ON or OFF) in the form of
a STRING(3).

TAB-delimited values are a common format compatible with the Windows
clipboard. Using the BASIC file driver string
/COMMA=9 lets you read Windows clipboard files

QUOTE

 DRIVER('BASIC', '/QUOTE = n')

 [Quote" =] SEND(file, 'QUOTE [= n]')

Specifies a single character string delimiter.

n is the ANSI code of the delimiter character. The default is 34, the ASCII value for the quotation
mark.

SEND returns the ASCII code of the single character string delimiter.

Popular File Formats

The following demonstrates how to use the driver strings to create two popular file formats:

✟ Microsoft Word for Windows Mail Merge:
/ALWAYSQUOTE=OFF
/FIELDDELIMITER=1,9
/ENDOFRECORD=1,13

✟ TAB delimited format:
/COMMA=9

Database Drivers 26

Basic:Supported Commands and Attributes

File Attributes Supported

 CREATE Y

 DRIVER(filetype [,driver string]) Y

 NAME Y

 ENCRYPT N

 OWNER(password) N

 RECLAIM N

 PRE(prefix) Y

 BINDABLE Y

 THREAD Y4

 EXTERNAL(member) Y

 DLL([flag]) Y

 OEM Y
File Structures Supported

 INDEX N

 KEY N

 MEMO N

 BLOB N

 RECORD Y
Index, Key, Memo, Attributes Supported

 BINARY N

 DUP N

 NOCASE N

 OPT N

 PRIMARY N

BASIC File Driver 27

 NAME N

 Ascending Components N

 Descending Components N

 Mixed Components N
Field Attributes Supported

 DIM Y

 OVER Y

 NAME Y
File Procedures Supported

 BOF(file) N

 BUFFER(file) N

 BUILD(file) N

 BUILD(key) N

 BUILD(index) N

 BUILD(index, components) N

 BUILD(index, components, filter) N

 BYTES(file) Y

 CLOSE(file) Y

 COPY(file, new file) Y

 CREATE(file) Y

 DUPLICATE(file) N

 DUPLICATE(key) N

 EMPTY(file) Y

 EOF(file) Y

 FLUSH(file) N

 LOCK(file) Y

 NAME(label) Y

Database Drivers 28

 OPEN(file, access mode) Y

 PACK(file) N

 POINTER(file) Y2

 POINTER(key) N

 POSITION(file) Y3

 POSITION(key) N

 RECORDS(file) N

 RECORDS(key) N

 REMOVE(file) Y

 RENAME(file, new file) Y

 SEND(file, message) Y

 SHARE(file, access mode) Y

 STATUS(file) Y

 STREAM(file) N

 UNLOCK(file) Y

Record Access Supported

 ADD(file) Y

 ADD(file, length) N

 APPEND(file) Y

 APPEND(file, length) N

 DELETE(file) N

 GET(file,key) N

 GET(file, filepointer) Y

 GET(file, filepointer, length) N

 GET(key, keypointer) N

 HOLD(file) N

 NEXT(file) Y

BASIC File Driver 29

 NOMEMO(file) N

 PREVIOUS(file) N

 PUT(file) Y1

 PUT(file, filepointer) Y1

 PUT(file, filepointer, length) N

 RELEASE(file) N

 REGET(file,string) Y

 REGET(key,string) N

 RESET(file,string) Y

 RESET(key,string) N

 SET(file) Y

 SET(file, key) N

 SET(file, filepointer) Y

 SET(key) N

 SET(key, key) N

 SET(key, keypointer) N

 SET(key, key, filepointer) N

 SKIP(file, count) N

 WATCH(file) N
Transaction Processing Supported

 LOGOUT(timeout, file, ..., file) N

 COMMIT N

 ROLLBACK N
Null Data Processing Supported

 NULL(field) N

 SETNULL(field) N

 SETNONNULL(field) N

Database Drivers 30

Notes
1 When using PUT() with this driver you should take care to PUT back the same number of

characters that were read. If you PUT back more characters than were read, then the
"extra" characters will overwrite the first part of the subsequent record. If you PUT back
fewer characters than were read, then only the first part of the retrieved record is
overwritten, while the last part of the retrieved record remains as it was prior to the PUT().

2 POINTER() returns the relative byte position within the file.

3 POSITION(file) returns a STRING(4).

4 THREADed files consume additional file handles for each thread that accesses the file.

Btrieve File Driver 31

Btrieve Database Driver
Btrieve:Specifications

This file driver reads and writes Btrieve files using low-level direct access.

Under Clarion, the Btrieve file driver is implemented by using .DLLs and an .EXE supplied by
Pervasive Software (formerly Btrieve Technologies, Inc.). For an application to use a Btrieve file
driver, the following files must accompany the executable:

 You must purchase a 32-bit Btrieve engine from Pervasive Software.

 LICENSE WARNING: A registered Clarion owner cannot redistribute the above files
outside of his/her organization without a license from Pervasive Software.

 Files: C60BTRXL.LIB Windows Static Link Library

 C60BTRX.LIB Windows Export Library

 C60BTRX.DLL Windows Dynamic Link Library

Btrieve:Data Types
Clarion data type Btrieve data type
BYTE STRING (1 byte)
SHORT INTEGER (2 bytes)
LONG INTEGER (4 bytes)
SREAL FLOAT (4 bytes)
REAL FLOAT (8 bytes)
BFLOAT4 BFLOAT (4 bytes)
BFLOAT8 BFLOAT (8 bytes)
PDECIMAL DECIMAL
STRING STRING
CSTRING ZSTRING
PSTRING LSTRING
DATE DATE
TIME TIME
USHORT UNSIGNED BINARY (2 bytes)
ULONG UNSIGNED BINARY (4 bytes)
MEMO STRING,LVAR or NOTE (see below)
BYTE,NAME('LOGICAL') LOGICAL*
USHORT,NAME('LOGICAL') LOGICAL*
PDECIMAL,NAME('MONEY') MONEY*
STRING(@N0n-),NAME('STS') SIGNED TRAILING SEPARATE*
DECIMAL*

Database Drivers 32

Notes:

* You can store Clarion DECIMAL types in a Btrieve file. However, you cannot build a key
or index using the field. This is provided for backward compatibility with older Clarion
programs which used the Btrieve LEM. If you need standard Btrieve decimal data that is
compatible with any other Btrieve compliant program, you should use the PDECIMAL
data type and not the DECIMAL data type.

* If you want to create a file with LOGICAL or MONEY field types, you must specify
LOGICAL or MONEY in the field's NAME attribute. If you are accessing an existing file,
the NAME attribute is not required.

 LOGICAL may be declared as a BYTE or USHORT, depending on whether it is a one or
two byte LOGICAL:

LogicalField1 BYTE !One byte LOGICAL
LogicalField2 USHORT !Two byte LOGICAL

 MONEY may be declared as a PDECIMAL(x,2), where x is the total number of digits to
be stored:

MoneyField PDECIMAL(7,2),NAME('MONEY') !Store up to 99999.99

* Btrieve NUMERIC fields are not fully supported by the driver. Btrieve NUMERIC is stored
as a string with the last character holding a digit and an implied sign. The possible values
for this last character are:

1 2 3 4 5 6 7 8 9 0
Positive: A B C D E F G H I {
Negative: J K L M N O P Q R }

 To access a NUMERIC field you must define a STRING(@N0x), where x is one less than
the digits in the NUMERIC, and a STRING(1) to hold the sign indicator. The Btrieve driver
does not maintain this sign field, the application must be written to directly handle it.

 For example to access a NUMERIC(7) you would have:
NumericGroup GROUP !Store -999999 to 999999
Number STRING(@N06)!Numbers
Sign STRING(1) !Sign indicator

END

Btrieve File Driver 33

Btrieve:File Specifications/Maximums
File Size : 4,000,000,000 bytes
Records per File : Limited by the size of the file
Record Size:
Client-based : 65,535 bytes variable length
Server based : 57,000 bytes variable length
Field Size : 65,520 bytes
Fields per Record : 65,520
Keys/Indexes per File : 24 with NLM5

256 with NLM6.
Client Btrieve v6.15
Page Size Max Key Segments
512 8
1,024 23
1,536 24
2,048 54
4,096 119

This is the total number of components. If you have a
multicomponent key built from three fields, this counts
as three indexes when counting the number of allowed
indexes.
Key Size : 255 bytes

Memo fields per File : System memory dependent
Memo field size : 65,520 bytes
Open Files : Operating system dependent

The Btrieve driver supports data only and key only files.

Database Drivers 34

Btrieve:Driver Strings

There are switches or "driver strings" you can set to control the way your application creates,
reads, and writes files with a specific driver. Driver strings are simply messages or parameters
that are sent to the file driver at run-time to control its behavior. See Common Driver Features--
Driver Strings for an overview of these runtime Database Driver switches and parameters.

The Btrieve Driver supports the following Driver Strings:

ACS

 DRIVER('BTRIEVE', '/ACS = filename')

 [SortSeq" =] SEND(file, 'ACS [= filename]')

When creating a Btrieve file you can specify an alternate collating sequence for sorting STRING
keys. This sorting sequence is normally obtained from the sort sequence you define in the INI file
for your program. However, Btrieve supplies files for doing case insensitive sorts. To create your
file using these sort sequences you specify the name of the sort file in the driver string.

ALLOWREAD

 DRIVER('BTRIEVE', '/ALLOWREAD = ON | OFF')

 [Read" =] SEND(file, 'ALLOWREAD [= ON | OFF]')

By default, a Btrieve file created with an owner name may be accessed only in read-only mode
when the owner name is not known. To prevent all access to the file without the owner name, set
ALLOWREAD to OFF. SEND returns the ALLOWREAD setting (ON or OFF) in the form of a
STRING(3).

APPENDBUFFER

 DRIVER('BTRIEVE', '/APPENDBUFFER = size ')

 [Buffer" =] SEND(file, 'APPENDBUFFER [= size]')

By default, APPEND adds records to the file one at a time. To get better performance over a
network you can tell the driver to build up a buffer of records then send all of them to Btrieve at
once. Size is the number of records you want to allocate for the buffer. SEND returns the number
of records that will fit in the buffer.

Btrieve File Driver 35

BALANCEKEYS

 DRIVER('BTRIEVE', '/BALANCEKEYS = ON | OFF')

 [Balance" =] SEND(file, 'BALANCEKEYS [= ON | OFF]')

When creating a Btrieve file, you can use this driver string to tell Btrieve that all keys associated
with the file must be stored in a balanced btree. This saves disk space, but will slow down file
adds, deletes and updates where key values change. SEND returns the BALANCEKEYS setting
(ON or OFF) in the form of a STRING(3).

COMPRESS

DRIVER('BTRIEVE', '/COMPRESS = ON | OFF')

 [Read" =] SEND(file, 'COMPRESS [= ON | OFF]')

Btrieve lets you compress the data before storage. This allows for a smaller storage requirement,
but reduces performance. When COMPRESS is ON, CREATE creates a compressed Btrieve file.
SEND returns the COMPRESS setting (ON or OFF) in the form of a STRING(3).

FREESPACE

 DRIVER('BTRIEVE', '/FREESPACE = 0 | 10 | 20 | 30')

 [Read" =] SEND(file, 'FREESPACE [= 0 | 10 | 20 | 30]')

Specifies the percentage of free space to maintain on variable length pages. The default is zero.
SEND returns the percentage of free space to maintain on variable length pages.

LACS

 DRIVER('BTRIEVE', '/LACS [= | country_id,codepage]')

 [Sequence" =] SEND(file, 'LACS [= | country_id,codepage]')

Btrieve v6.15 and later offers the Local Alternate Collating Sequences feature. This allows your
string keys to sort based on the country code for the machine running your program. To use this
feature include '/LACS' in your driver string.

Database Drivers 36

/LACS=country_ID,code_page

You can also specify a User-Defined Alternate Collating Sequence. This allows your string key to
sort based on the DOS country code and code page for a particular country. To use this feature
you put '/LACS=country_id,codepage' in your driver string. Note that there must be no spaces
surrounding the comma.

SEND returns country_id,codepage or the string ',' if using the Local Alternate Collating
Sequences feature.

MEMO

 DRIVER('BTRIEVE', '/MEMO = SINGLE | LVAR | NOTE [,delimiter]')

 [Memo" =] SEND(file, 'MEMO [= SINGLE | LVAR | NOTE [,delimiter]]')

/MEMO=SINGLE

To access existing Btrieve files created with the Btrieve LEM from Clarion Professional Developer
2.1(DOS), or files with variable length records set MEMO to SINGLE.

To access a file with variable length records, use a SINGLE style MEMO whose size equals the maximum
of the variable length component of the record. To add/put records to this style file with binary data stored i
variable length section, use the ADD(file,length), APPEND(file,length) and PUT(file,pos,length) functions. T
driver ignores the pos parameter in the PUT function, but initialize it to 0 (zero) for future compatibility. The
APPEND or PUT functions will remove all trailing spaces for text memos and NULL characters for binary m
before storing the record.

/MEMO=LVAR
/MEMO=NOTE,<delimiter>

To access Xtrieve data files that have data type of Note or LVar, set the driver string to NOTE
and LVAR respectively. With the NOTE data type, specify the end-of-field delimiter. Specify the
ASCII value for the delimiter. NOTE and LVAR memos do not require the use of the size variants
of ADD, APPEND and PUT, when storing records. The end of record marker is not necessary for
a NOTE style memo. The driver automatically adds the end of record marker before storing the
record and removes it before putting the memo data into the memo buffer.

As an example, "/MEMO=NOTE,141" indicates a file with an Xtrieve Notes field using CR/LF as
the delimiter. For more information on the Xtrieve data types refer to the documentation supplied
by Novell.

Btrieve File Driver 37

SEND(file,'MEMO')

Returns the MEMO setting: NORMAL, NOTE, LVAR, or SINGLE.

PAGESIZE

 DRIVER('BTRIEVE', '/PAGESIZE = SIZE')

 [PSize" =] SEND(file, 'PAGESIZE[=SIZE')

Sets the Btrieve Page size at file creation time. The size must be a multiple of 512, with a
maximum of 4096. Larger page sizes usually result in more efficient disk storage.

SEND returns the page size setting.

PREALLOCATE

 DRIVER('BTRIEVE', '/PREALLOCATE = n')

 [Read" =] SEND(file, 'PREALLOCATE [= n]')

When creating a Btrieve file, you can preallocate n pages of disk space for the file. The default is
zero. SEND returns the number of pages of allocated disk space.

TRUNCATE

 DRIVER('BTRIEVE', '/TRUNCATE = ON | OFF')

 [Trunc" =] SEND(file, 'TRUNCATE [= ON | OFF]')

When creating a Btrieve file, you can use this driver string to tell Btrieve to truncate trailing
spaces. This forces the record to be stored as a variable length record. SEND returns the
TRUNCATE setting (ON or OFF) in the form of a STRING(3).

Database Drivers 38

Btrieve:Driver Properties

You can use Clarion's property syntax to query and set certain driver properties. These properties
are described below.

PROP:PageLevelLocking

PROP:PageLevelLocking sets the type of locking the driver uses with LOGOUT. The driver uses
either page or file level locking schemes. Set to PageLevelLocking by setting the property to '1'.
This is the default. To set the driver to file level locking, set the property to ''.
MyFile{PROP:PageLevelLocking} = '1' !Set Page level locking
MyFile{PROP:PageLevelLocking} = '' !Set File level locking
loc:lock = MyFile{PROP:PageLevelLocking} !read locking scheme

PROP:PositionBlock

PROP:PositionBlock returns the Btrieve pointer to the Btrieve position block used by the Btrieve
driver for the named file. This allows you to call Btrieve operations directly. For example:
 MAP
MODULE('Btrieve')
BTRV(USHORT,LONG,<*STRING>,*UNSIGNED,<*STRING>,BYTE,BYTE),|
NAME('BTRV'),PASCAL,RAW
END

END

StatData STRING(33455)
KeyData STRING(64)
DataLen UNSIGNED(33455)

CODE
PosBlock = file{PROP:PositionBlock}
BTRV(15,PosBlock,StatData,DataLen,KeyData,64,0) !Get file statistics

Btrieve File Driver 39

Btrieve:Supported Commands and Attributes

File Attributes Supported

 CREATE Y

 DRIVER(filetype [,driver string]) Y

 NAME Y

 ENCRYPT Y

 OWNER(password) Y1

 RECLAIM Y

 PRE(prefix) Y

 BINDABLE Y

 THREAD Y15

 EXTERNAL(member) Y

 DLL([flag]) Y

 OEM Y
File Structures Supported

 INDEX Y

 KEY Y

 MEMO Y2

 BLOB N

 RECORD Y
Index, Key, Memo Attributes Supported

 BINARY Y16

 DUP Y

 NOCASE Y

 OPT Y

 PRIMARY Y

Database Drivers 40

 NAME Y2

 Ascending Components Y

 Descending Components Y

 Mixed Components Y
Field Attributes Supported

 DIM Y

 OVER Y

 NAME Y
File Procedures Supported

 BOF(file) Y10

 BUFFER(file) N

 BUILD(file) Y3

 BUILD(key) Y3

 BUILD(index) Y3

 BUILD(index, components) Y3

 BUILD(index, components, filter) N

 BYTES(file) N

 CLOSE(file) Y

 COPY(file, new file) Y

 CREATE(file) Y

 DUPLICATE(file) Y

 DUPLICATE(key) Y

 EMPTY(file) Y

 EOF(file) Y10

 FLUSH(file) Y

 LOCK(file) N4

 NAME(label) Y

Btrieve File Driver 41

 OPEN(file, access mode) Y

 PACK(file) Y

 POINTER(file) Y11

 POINTER(key) Y11

 POSITION(file) Y12

 POSITION(key) Y12

 RECORDS(file) Y

 RECORDS(key) Y

 REMOVE(file) Y

 RENAME(file, new file) Y

 SEND(file, message) Y

 SHARE(file, access mode) Y

 STATUS(file) Y

 STREAM(file) Y

 UNLOCK(file) N

Record Access Supported

 ADD(file) Y5

 ADD(file, length) Y5

 APPEND(file) Y6

 APPEND(file, length) Y5,6

 DELETE(file) Y7

 GET(file,key) Y

 GET(file, filepointer) Y

 GET(file, filepointer, length) N

 GET(key, keypointer) Y

 HOLD(file) Y

 NEXT(file) Y

Database Drivers 42

 NOMEMO(file) Y

 PREVIOUS(file) Y

 PUT(file) Y5

 PUT(file, filepointer) N

 PUT(file, filepointer, length) Y

 RELEASE(file) Y

 REGET(file,string) Y

 REGET(key,string) Y

 RESET(file,string) Y

 RESET(key,string) Y

 SET(file) Y

 SET(file, key) Y

 SET(file, filepointer) Y8

 SET(key) Y

 SET(key, key) Y

 SET(key, keypointer) Y8

 SET(key, key, filepointer) Y9

 SKIP(file, count) Y

 WATCH(file) Y
Transaction Processing Supported

 LOGOUT(timeout, file, ..., file) Y13,14

 COMMIT Y14

 ROLLBACK Y
Null Data Processing Supported

 NULL(field) N

 SETNULL(field) N

 SETNONNULL(field) N

Btrieve File Driver 43

Notes
1 We recommend using a variable password that is lengthy and contains special

characters because this more effectively hides the password value from anyone looking
for it. For example, a password like "dd....#$...*&" is much more difficult to "find" than a
password like "SALARY."

To specify a variable instead of the actual password in the Owner Name field of the
File Properties dialog, type an exclamation point (!) followed by the variable name.
For example: !MyPassword.

2 The driver ignores any NAME attribute on a MEMO field. MEMO fields can reside either
in a separate file, or in the data file if the driver string /MEMO is set to SINGLE, LVAR or
NOTE. If the driver string /MEMO is not set, the separate MEMO file name is "MEM,"
preceded by the first five characters of the file's label, plus the file extension ".DAT."
Setting the driver string /MEMO restricts you to one memo field per file.

3 If used after an APPEND(), but before a file is closed, this adds the keys dropped by
APPEND(). In all other cases BUILD() rebuilds the file and keys. If you only want to
rebuild keys, doing a BUILD(key) for each key is faster than BUILD(file).

4 Btrieve does not directly support file locking. If you require file locking, use LOGOUT.

5 When using the LVAR and NOTE memo type, make certain that the memo has the
appropriate structure. If the structure is incorrect and the driver calculates a length
greater than the maximum memo size defined for that file, these functions fail and set
errorcode to 57 - Invalid Memo File.

 6 Btrieve does not support non-key updates. To emulate APPEND() behavior, the driver
drops all indexes possible when APPEND() is first called. Calling BUILD() immediately
after appending records rebuilds the dropped key fields.

7 Btrieve's DELETE destroys positioning information when processing in file order. The
driver attempts to reposition to the appropriate record. This is not always possible and
may require the driver to read from the start of the file. Using key order processing avoids
this possible slow down.

8 If a file pointer or key pointer has a value of zero, the driver ignores the pointer
parameter. Processing is set to either file or key order, and the record pointer is set to the
first element.

9 If the file pointer has a value of zero, processing starts at the first key value whose
position is greater than (or less than for PREVIOUS) the file pointer. Not passing a valid
pointer, other than maximum LONG or maximum ULONG, is inefficient.

Database Drivers 44

10 These functions are supported, but not recommended. They cause more disk I/O than
ERRORCODE(). Btrieve returns eof when reading past the last record. Therefore, the
driver must read the next record, then the next to see if it's at the end of file, then return
to the record you want.

11 POINTER() returns a relative position within the file, not a record number.

12 POSITION(file) returns a STRING(4). POSITION(key) returns a STRING the size of the
key fields + 4 bytes.

13 If a system crashes during a transaction (LOGOUT--COMMIT), the recovery is
automatically handled by the Btrieve driver the next time the affected file is accessed.

 When you issue a LOGOUT, all Btrieve files accessed during the transaction are logged
out. The following code is illegal because you cannot close a logged-out file:

LOGOUT(1,file1)
OPEN(file1)
CLOSE(file1)

14 See also PROP:Logout in the Language Reference.

15 THREADed files do not consume additional file handles for each thread that accesses
the file.

16 OEM conversion is not applied to BINARY MEMOs. The driver assumes BINARY
MEMOs are zero padded; otherwise, space padded.

Btrieve:Other
Client/Server
For Client/Server-based Btrieve, Netware Btrieve is a server-based version of Btrieve that runs on
a Novell server.

File Structure

A single file normally holds the data and all keys. Data filenames default to a *.DAT file extension.
By default, the driver stores memos in a separate file, or optionally in the data file itself, given the
appropriate driver string.

Because Btrieve is a data-model independent, indexed record manager, it does not store field
definitions within the data itself. The application accessing the data determines how to interpret
the Btrieve record. Absent .DDF files describing the Btrieve file, it is very difficult for an application
that does not create or maintain the file to meaningfully interpret its data.

The Btrieve file format stores minimal file structure information in the file. As far as possible, the
driver validates your description against the information in the file. However, it is possible to
successfully open a Btrieve file that has key definitions that do not exactly match your definition.
You must make certain that your file and key definitions accurately match the Btrieve file.

Btrieve File Driver 45

Keys and Indexes

KEYs are dynamic, and automatically update when the data file changes.

INDEXes are stored separately from data files. INDEX files receive a temporary file name, and
are deleted when the program terminates normally. INDEXes are static--they are not
automatically updated when the data file changes. The BUILD statement creates or updates
index files.

Record Lengths

The driver stores records less than 4K as fixed length. It stores records greater than 4K as
variable length. The minimum record length is 4 bytes. One record can be held in each open file
by each user.

Page Size

To determine the physical record length, add 8 bytes for each KEY that allows duplicates. Add 4
bytes if the file allows variable record lengths. Finally, allow 6 bytes for overhead per page.

For example: If the record size is 300 bytes and the file has three KEYs that allow Duplicates, the
total record size is:

 300 record size

 x 24 overhead for three KEYs with the DUP attribute

 = 324 physical record length

A page size of 512 would only hold one such record, and 182 bytes per page would go unused
(512 - 6 - 324). If the page size were 1024, three records could be stored per page and only 46
bytes would go unused (1024 - 6 - (324 * 3)).

You must load BTRIEVE.EXE with a page size equal to or greater than the largest page size of
any file that you will be accessing.

Database Drivers 46

File Sharing

Btrieve lets you open a file in five different formats: NORMAL, ACCELERATED, READ-ONLY,
VERIFY, or EXCLUSIVE. The equivalent Clarion OPEN() states are:

Btrieve State Clarion OPEN/SHARE access mode
ACCELERATED Read/Write with FCB compatibility mode (2H)
READ-ONLY Read Only (0H,10H,20H,30H,40H)
VERIFY Write Only with FCB compatibility mode (1H)
EXCLUSIVE Write Only with any Deny flag (11H,21H,31H,41H)

Read/Write with Deny All, Read or Write (12H,22
NORMAL Read/Write with Deny None (42H)

Btrieve allows a file to have a specified owner. See the /READONLY driver string for details on
setting this flag. The file may also be encrypted with the ENCRYPT attribute. A file can only be
encrypted when an owner name is supplied.

Record Pointers

Btrieve uses an unsigned long for its internal record pointer; negative values are stripped of their
sign. We recommend the ULONG data type for your record pointer.

Collating Sequence
✟ Key Attribute: NOCASE

 NLM 5 does not support case insensitive indexing. When necessary, you must supply an
alternate collating sequence which implements case insensitive sorting.

 Btrieve supports an alternate collating sequence. However, NLM 6 does not support both
NOCASE and an alternate collating sequence. If you specify both, the NOCASE attribute
takes precedence. No error is returned fromThe SEND function.

✟ Changing the Collating Sequence

 Btrieve stores the collating sequence inside the file. So to change the collating sequence
you have to change the .ENV file, then create a new Btrieve file based on the modified
.ENV file, then copy the data from the old file to the new file.

Btrieve File Driver 47

KEY Definitions
✟ When defining a file, the key definition does not need to exactly match the underlying file.

For example, you can have a physical file with a single component STRING(20). You can
define this as a key with two string components with a total length of 20. The rule is that
the data types must match and the total size must match. However, if your Clarion
definition does not exactly match the underlying file, the driver cannot optimize
APPEND() or BUILD() statements.

✟ A Key's NAME attribute can add additional functionality.

 KEY,NAME('MODIFIABLE=true|false')

 Btrieve lets you create a key that cannot be changed once created. To use this feature
you can use the name attribute on the key to set MODIFIABLE to FALSE. It defaults to
TRUE.

 KEY,NAME('ANYNULL')

 Btrieve lets you create a key that will not include a record if any key components are null.
To create such a key you specify ANYNULL in the key name.

 For example, to create a key that is non-modifiable and excludes keys if any component
is null:

Key1 KEY(+pre:field1,-pre:field2),NAME('ANYNULL MODIFIABLE=FALSE')

 KEY,NAME('AUTOINCREMENT')

 The Clarion CREATE statement creates a Btrieve autoincrement key.

 KEY,NAME('REPEATINGDUPLICATE')

 By default Btrieve version 6 stores a reference to only the first record in a series of
duplicate records in a key. The other occurrences of the duplicate key value are obtained
by following a link list stored at the record. To create an index where all duplicate records
are stored in the key you use the NAME('REPEATINGDUPLICATE'). This produces
larger keys, but random access to duplicate records is faster (this feature is only available
for version 6 files).

Database Drivers 48

Clarion File Driver 49

Clarion Database Driver
Clarion:Specifications

The Clarion file driver is compatible with the file system used by Clarion for DOS 3.1 and Clarion
Professional Developer 2.1, patch 2.109 and later.

Keys and Indexes exist as separate files from the data file. Keys are dynamic--they are
automatically updated as the data file changes. The default file extension for a key file is *.K##.
Indexes are static--they do not automatically update, but instead require the BUILD statement for
updating.

The driver stores records as fixed length. It stores memo fields in a separate file. The memo file
defaults to the first eight characters of the File Label plus an extension of .MEM.

Files: C60CLAXL.LIB Windows Static Link Library
C60CLAX.LIB Windows Export Library
C60CLAX.DLL Windows Dynamic Link Library

By avoiding the ASCII-only file formats of many other popular PC database
application development systems, the Clarion file format provides a more secure
means of storing data.

Clarion:Data Types
BYTE DECIMAL1

SHORT STRING (255 byte maximum)
LONG MEMO
REAL GROUP

1 Decimal sizes greater than 15 are not supported by Clarion Professional Developer 2.1.

Clarion:File Specifications/Maximums

File Size: limited only by disk space
Records per File : 4,294,967,295
Record Size: 65,520 bytes
Field Size : 65,520 bytes
Field Name: 12 characters
Fields per Record: 65,520
Keys/Indexes per File: 251
Key Size: 245 bytes
Memo fields per File : 1
Memo Field Size: 65,520 bytes
Open Data Files: Operating system dependent

Database Drivers 50

Clarion:Driver Strings

There are switches or "driver strings" you can set to control the way your application creates,
reads, and writes files with a specific driver. Driver strings are simply messages or parameters
that are sent to the file driver at run-time to control its behavior. See Common Driver Features--
Driver Strings for an overview of these runtime Database Driver switches.

Some driver strings have no effect after the file is open, so no SEND function
syntax is listed for those strings. However, the SEND function syntax to return the
value of the switch is listed for all driver strings.

The Clarion Driver supports the following Driver Strings:

DELETED

 SEND(file, 'DELETED')

For use only with the SEND command when IGNORESTATUS is on. Reports the status of the
loaded record. If deleted, the return string is "ON" and if not "OFF."

HELD

 SEND(file, 'HELD')

For use only with the SEND command when IGNORESTATUS is on. Reports the status of the
loaded record. If held, the return string is "ON" and if not "OFF."

IGNORESTATUS

 DRIVER('Clarion', '/IGNORESTATUS = on | off')

 [Status" =] SEND(file, 'IGNORESTATUS [= on | off]')

When set on, the driver does not skip deleted records when accessing the file with GET(),
NEXT(), and PREVIOUS() in file order. It also enables a PUT() on a deleted or held record.
IGNORESTATUS requires opening the file in exclusive mode. However, any MEMO data of the
deleted records is not recoverable. SEND returns the IGNORESTATUS setting (ON or OFF) in
the form of a STRING(3).

Clarion File Driver 51

MAINTAINHEADERTIME

 DRIVER('Clarion', '/MAINTAINHEADERTIME = on | off')

 [Status" =] SEND(file, 'MAINTAINHEADERTIME [= on | off]')

When set on, the driver maintains the file header time stamp (last updated) under all
circumstances. When set to off (the default), the driver improves performance by ignoring the
time stamp under some circumstances. SEND returns the MAINTAINHEADERTIME setting (ON
or OFF) in the form of a STRING(3).

RECOVER

 SEND(file, 'RECOVER = n')

The RECOVER string, when n is greater than 0, UNLOCKs data files, RELEASEs held records,
and rolls back incomplete transactions in order to recover from a system crash. See also
Transaction Processing for Clarion Files.

n represents the number of seconds to wait before invoking the recovery process. When n is
equal to 1, the recovery process is invoked immediately. When n is equal to 0, the recovery
process is disarmed.

There are two ways of using RECOVER:
SEND(file,RECOVER=n)
OPEN(file)

This releases a LOCK on a file that was locked when a machine crashed. It also rolls back a
transaction that was in process when a system crashed.
SEND(file,RECOVER=n)
GET or NEXT or PREVIOUS

This removes a hold flag from records that where held when a machine crashed. Here is a piece
of code that removes all hold flags from a file:
OPEN(file) !make sure no one else is using the file
SEND(file,'IGNORESTATUS=ON')
SET(file)
LOOP
NEXT(file)
IF ERRORCODE()
BREAK

END
IF SEND(file,'HELD') = 'ON' THEN
SEND(file,'RECOVER=1')
REGET(file,POSITION(file))

END
END

Database Drivers 52

RECOVER may not be used as a DRIVER string--you may only use it with the SEND function.
The SEND function returns a blank string.

Clarion:Supported Commands and Attributes

File Attributes Supported

 CREATE Y

 DRIVER(filetype [,driver string]) Y

 NAME Y

 ENCRYPT Y

 OWNER(password) Y1

 RECLAIM Y

 PRE(prefix) Y

 BINDABLE Y

 THREAD Y8

 EXTERNAL(member) Y

 DLL([flag]) Y

 OEM Y

File Structures Supported

 INDEX Y

 KEY Y

 MEMO Y

 BLOB N

 RECORD Y
Index, Key, Memo Attributes Supported

 BINARY Y9

 DUP Y

 NOCASE Y

 OPT Y

Clarion File Driver 53

 PRIMARY Y

 NAME Y

 Ascending Components Y

 Descending Components N

 Mixed Components N
Field Attributes Supported

 DIM Y

 OVER Y

 NAME Y
File Procedures Supported

 BOF(file) Y2

 BUFFER(file) N

 BUILD(file) Y

 BUILD(key) Y

 BUILD(index) Y

 BUILD(index, components) Y

 BUILD(index, components, filter) N

 BYTES(file) Y

 CLOSE(file) Y

 COPY(file, new file) Y

 CREATE(file) Y

 DUPLICATE(file) Y

 DUPLICATE(key) Y

 EMPTY(file) Y

 EOF(file) Y2

 FLUSH(file) Y

 LOCK(file) Y

Database Drivers 54

 NAME(label) Y

 OPEN(file, access mode) Y

 PACK(file) Y

 POINTER(file) Y3

 POINTER(key) Y3

 POSITION(file) Y4

 POSITION(key) Y4

 RECORDS(file) Y

 RECORDS(key) Y

 REMOVE(file) Y

 RENAME(file, new file) Y

 SEND(file, message) Y

 SHARE(file, access mode) Y

 STATUS(file) Y

 STREAM(file) Y

 UNLOCK(file) Y

Record Access Supported

 ADD(file) Y10

 ADD(file, length) N

 APPEND(file) Y

 APPEND(file, length) N

 DELETE(file) Y

 GET(file,key) Y

 GET(file, filepointer) Y

 GET(file, filepointer, length) N

 GET(key, keypointer) Y

 HOLD(file) Y

Clarion File Driver 55

 NEXT(file) Y

 NOMEMO(file) Y

 PREVIOUS(file) Y

 PUT(file) Y10

 PUT(file, filepointer) Y

 PUT(file, filepointer, length) N

 RELEASE(file) Y

 REGET(file,string) Y

 REGET(key,string) Y

 RESET(file,string) Y

 RESET(key,string) Y

 SET(file) Y

 SET(file, key) Y

 SET(file, filepointer) Y

 SET(key) Y

 SET(key, key) Y

 SET(key, keypointer) Y

 SET(key, key, filepointer) Y

 SKIP(file, count) Y

 WATCH(file) Y
Transaction Processing Supported

 LOGOUT(timeout, file, ..., file) Y6,7

 COMMIT Y

 ROLLBACK Y

Database Drivers 56

Null Data Processing Supported

 NULL(field) N

 SETNULL(field) N

 SETNONNULL(field) N

Notes
1 We recommend using a variable password that is lengthy and contains special

characters because this more effectively hides the password value from anyone looking
for it. For example, a password like "dd....#$...*&" is much more difficult to "find" than a
password like "SALARY."

To specify a variable instead of the actual password in the Owner Name field of the
File Properties dialog, type an exclamation point (!) followed by the variable name.
For example: !MyPassword.

2 These functions are supported but not recommended due to the lack of support in other
file systems. NEXT and PREVIOUS post Error 33 if you attempt to read beyond the end
of the file.

3 POINTER() returns a record number.

4 POSITION(file) returns a STRING(4). POSITION(key) returns a STRING the size of the
key fields + 4 bytes.

5 The RECOVER switch must be "armed" at the beginning of your program in order to
support transaction processing. See Driver Strings for more information on the
RECOVER function.

6 LOGOUT has the effect of LOCKing the file. See also PROP:Logout in the Language
Reference.

7 You cannot LOGOUT an aliased file and its primary file at the same time.

8 THREADed files consume additional file handles for each thread that accesses the file.

9 OEM conversion is not applied to BINARY MEMOs. The driver assumes BINARY
MEMOs are zero padded; otherwise, space padded.

Clarion File Driver 57

10 Prior to Clarion 2.003 in 16-bit programs under Microsoft operating systems, writes (ADD,
PUT) did not correctly flush operating system buffers. This problem is corrected with
Clarion 2.003 and higher, so that writes are slower but safer. To implement the pre 2.003
behavior, use STREAM and FLUSH.

Clarion:Other

Transaction Processing for Clarion Files
When you issue a LOGOUT statement the Clarion file driver creates a transaction file called
programname.TR$. By default this file is created in the same directory as the program. To create
the transaction file elsewhere, add a CWC21 section to the WIN.INI file as follows:
[CWC21]
CLATMP=path

where path is a directory visible to all users. This statement
PUTINI('CWC21','CLATMP',path)

creates the correct .INI file section.

During a transaction datafile.LOG files are created for each data file edited during the transaction.
These LOG files always reside in the same directory as the data file.

If a system crashes while a transaction is active, no user will be able to access the files until a
recovery is run on the files. See the RECOVER send command on how to do this.

LOGOUT has the effect of LOCKing the file.

Field Labels

The Clarion driver only supports fully qualified field names (prefix + label) of 16 characters or
less. That is, within the Clarion file (*.DAT) header, the driver truncates prefix + label to the first
16 characters. If the first 16 characters are not unique, the truncation results in duplicate field
names.

Duplicate field names within the file header can cause problems with Clarion for DOS 2.1 and
earlier. In addition, it can cause problems if you import the file definition from the Clarion file
(*.DAT), then compile a Clarion application based on the imported file definition containing the
duplicate field names.

You can avoid duplicate field name problems by using the NAME attribute (the External Name
field in the Data Dictionary's Field Properties dialog) to provide unique names for fields whose
first 16 characters are duplicated. By providing unique names in the NAME attribute, your
application can refer to the field by its (long) label, and the Clarion driver uses the unique NAME
attribute to resolve conflicts.

Database Drivers 58

Clipper File Driver 59

Clipper Database Driver
Clipper:Specifications

The Clipper file driver is compatible with Clipper Summer '87 and Clipper 5.0. The default data file
extension is *.DBF.

Keys and Indexes exist as separate files from the data file. Keys are dynamic--they automatically
update as the data file changes. Indexes are static--they do not automatically update, but instead
require the BUILD statement for updating. The default file extension for the index file is *.NTX.

The driver stores records as fixed length. It stores memo fields in a separate file. The memo file
name takes the first eight characters of the File Label plus an extension of .DBT.

Files: C60CLPXL.LIB Windows Static Link Library

 C60CLPX.LIB Windows Export Library

 C60CLPX.DLL Windows Dynamic Link Library

As a popular xBase database application development system, Clipper provides a
common file format for many installed business applications and their data files.
Use the Clipper driver to access these files in their native format.

Clipper:Data Types

The xBase file format stores all data as ASCII strings. You may either specify STRING types with
declared pictures for each field, or specify native Clarion data types, which the driver converts
automatically.

Clipper data type Clarion data type STRING w/ picture
Date DATE STRING(@D12)
*Numeric REAL STRING(@N-_p.d)
*Logical BYTE STRING(1)
Character STRING STRING
*Memo MEMO MEMO

Database Drivers 60

If your application reads and writes to existing files, a pictured STRING will suffice. However, if
your application creates a Clipper file, you may require additional information for these Clipper
types:

✟ To create a numeric field in the Data Dictionary, choose the REAL data type. In the
External Name field on the Attributes tab, specify
'NumericFieldName=N(Precision,DecimalPlaces)' where NumericFieldName is the name
of the field, Precision is the precision of the field and DecimalPlaces is the number of
decimal places. With a REAL data type, you cannot access the Character or Places fields
in the Field definition, you must specify those attributes with an expression in the External
Name Field on the Attributes tab.

 For example, if you want to create a field called Number with nine significant digits and
two decimal places, enter 'Number=N(9,2) in the External Name field on the Attributes
tab of the Field properties in the Data Dictionary.

 If you're hand coding a native Clarion data type, add the NAME attribute using the same
syntax.

 If you're hand coding a STRING with picture, STRING(@N-_9.2), NAME('Number'),
where Number is the field name.

✟ To create a logical field, using the data dictionary, choose the BYTE data type. There are
no special steps; however, see the miscellaneous section for tips on reading the data
from the field.

 If you're hand coding a STRING with picture, add the NAME attribute: STRING(1),
NAME('LogFld = L').

✟ To create a date field, using the data dictionary, choose the DATE data type, rather than
LONG, which you usually use for the TopSpeed or Clarion file formats.

✟ MEMO field declarations require the a pointer field in the file's record structure. Declare
the pointer field as a STRING(10) or a LONG. This field will be stored in the .DBF file
containing the offset of the memo in the .DBT file. The MEMO declaration must have a
NAME() attribute naming the pointer field. An example file declaration follows:

File FILE, DRIVER('Clipper')
Memo1 MEMO(200),NAME('Notes')
Memo2 MEMO(200),NAME('Text')
Rec RECORD
Mem1Ptr LONG,NAME('Notes')
Mem2Ptr STRING(10),NAME('Text')

END
END

Clipper File Driver 61

Whenever possible, use the File Import Utility in the Dictionary Editor to define
your files.

Clipper:File Specifications/Maximums
File Size: 2,000,000,000 bytes
Records per File: 1,000,000,000
Record Size: 4,000 bytes (Clipper '87)

8,192 bytes (Clipper 5.0)
Field Size

Character: 254 bytes (Clipper '87)
2048 bytes (Clipper 5.0)

Date: 8 bytes
Logical: 1 byte
Numeric: 20 bytes including decimal point
Memo: 65,520 bytes (see note)

Fields per Record:1024
Keys/Indexes per File: No Limit
Key Sizes

Character: 100 bytes
Numeric, Date: 8 bytes

Memo fields per File: Dependent on available memory
Open Files: Operating system dependent

Database Drivers 62

Clipper:Driver Strings
There are switches or "driver strings" you can set to control the way your application creates,
reads, and writes files with a specific driver. Driver strings are simply messages or parameters
that are sent to the file driver at run-time to control its behavior. See Common Driver Features--
Driver Strings for an overview of these runtime Database Driver switches and parameters.

Some driver strings have no effect after the file is open, so no SEND function
syntax is listed for those strings. However, the SEND function syntax to return the
value of the switch is listed for all driver strings.

The Clipper Driver supports the following Driver Strings:

BUFFERS

 DRIVER('CLIPPER', '/BUFFERS = n')

 [Status" =] SEND(file, 'BUFFERS [= n]')

 Sets the size of the buffer used to read and write to the file, where the buffer size is (n * 512
bytes). Use the /BUFFERS driver string to increase the buffer size if access is slow. Maximum
buffer size is 4,294,967,264. SEND returns the size of the buffer in bytes.

The default is three buffers of 1024 bytes each. Increasing the number of buffers
will not increase performance when a file is shared by multiple users.

RECOVER

 DRIVER('CLIPPER', '/RECOVER')

 [Status" =] SEND(file, 'RECOVER')

Equivalent to the Xbase RECALL command, which recovers records marked for deletion. When
using the Clipper driver, the DELETE statement flags a record as "inactive." The driver does not
remove the record until the PACK command is executed.

RECOVER is evaluated each time you open the file if you add the driver string to the data
dictionary. When the driver recovers the records previously marked for deletion, you must
manually rebuild keys and indexes with the BUILD statement.

Clipper File Driver 63

IGNORESTATUS

 DRIVER('CLIPPER', '/IGNORESTATUS = on | off ')

 [Status" =] SEND(file, 'IGNORESTATUS [on | off]')

When set on, the driver does not skip deleted records when accessing the file with GET, NEXT,
and PREVIOUS in file order. It also enables a PUT on a deleted or held record. IGNORESTATUS
requires opening the file in exclusive mode. SEND returns the IGNORESTATUS setting (ON or
OFF) in the form of a STRING(3).

DELETED

 [Status" =] SEND(file, 'DELETED')

For use only with the SEND command, when IGNORESTATUS is on. Returns the status of the
current record. If deleted, the return string is "ON" and if not, "OFF."

ZEROY2K

DRIVER('CLIPPER', '/ZEROY2K = on | off')

[Status" =] SEND(file, 'ZEROY2K [on | off]')

In the header of Clipper files there is a field that stores the year that the file was last edited. Some
applications store this as the number of years since 1900. Others store it as a 2-digit year. So for
dates in the year 2000 some applications store 0 in this field and others 100. Clarion will read files
with either. However it will write 100. Writing 100 may make the files unreadable by products that
only support 0. To change this behavior you can with use a driver string of ZEROY2K, a SEND
command or a setting in the WIN.INI file.

The driver will store 0 in the DBF file header when the WINI.INI setting is set to 1 or 'on' in a
SEND command or driver string, otherwise a 100 will be stored in the DBF file header.

Note: The SEND command causes the setting to be set for all files
that use that driver, not just for that file.

Database Drivers 64

Example:
WIN.INI
;Sets all Clipper files to store a 0 in the DBF file header
[CWCLIPPER]
ZEROY2K=1

SEND command
SEND('Orders', ZEROY2K='on' !sets Orders file to store 0 in the DBF file header
SEND('Orders', ZEROY2K='off' !sets Orders file to store 100 in the DBF file header

Driver String
Orders FILE, DRIVER('clipper', '/ZEROY2K=on'),PRE(ORD) !SETS Orders file to store 0

Clipper:Supported Commands and Attributes

File Attributes Supported

 CREATE Y1

 DRIVER(filetype [,driver string]) Y

 NAME Y

 ENCRYPT N

 OWNER(password) N

 RECLAIM N2

 PRE(prefix) Y

 BINDABLE Y

 THREAD Y16

 EXTERNAL(member) Y

 DLL([flag]) Y

 OEM Y
File Structures Supported

 INDEX Y

 KEY Y

 MEMO Y3

 BLOB N

 RECORD Y

Clipper File Driver 65

Index, Key, Memo Attributes Supported

 BINARY N

 DUP Y4

 NOCASE Y

 OPT N

 PRIMARY Y

 NAME Y3

 Ascending Components Y

 Descending Components Y

 Mixed Components Y
Field Attributes Supported

 DIM N

 OVER Y

 NAME Y1
File Procedures Supported

 BOF(file) Y11

 BUFFER(file) N

 BUILD(file) Y

 BUILD(key) Y

 BUILD(index) Y

 BUILD(index, components) Y5

 BUILD(index, components, filter) N

 BYTES(file) N

 CLOSE(file) Y

 COPY(file, new file) Y6

 CREATE(file) Y1

 DUPLICATE(file) Y

Database Drivers 66

 DUPLICATE(key) Y

 EMPTY(file) Y

 EOF(file) Y11

 FLUSH(file) Y

 LOCK(file) Y

 NAME(label) Y

 OPEN(file, access mode) Y7

 PACK(file) Y

 POINTER(file) Y12

 POINTER(key) Y12

 POSITION(file) Y13

 POSITION(key) Y13

 RECORDS(file) Y14

 RECORDS(key) Y14

 REMOVE(file) Y

 RENAME(file, new file) Y8

 SEND(file, message) Y

 SHARE(file, access mode) Y7

 STATUS(file) Y

 STREAM(file) Y

 UNLOCK(file) Y

Record Access Supported

 ADD(file) Y9

 ADD(file, length) N

 APPEND(file) Y9

 APPEND(file, length) N

 DELETE(file) Y6

Clipper File Driver 67

 GET(file,key) Y

 GET(file, filepointer) Y

 GET(file, filepointer, length) N

 GET(key, keypointer) Y

 HOLD(file) Y10

 NEXT(file) Y

 NOMEMO(file) Y

 PREVIOUS(file) Y

 PUT(file) Y

 PUT(file, filepointer) Y

 PUT(file, filepointer, length) N

 RELEASE(file) Y

 REGET(file,string) Y

 REGET(key,string) Y

 RESET(file,string) Y

 RESET(key,string) Y

 SET(file) Y

 SET(file, key) Y

 SET(file, filepointer) Y

 SET(key) Y

 SET(key, key) Y

 SET(key, keypointer) Y

 SET(key, key, filepointer) Y

 SKIP(file, count) Y

 WATCH(file) Y
Transaction Processing Supported (See Note 15)

 LOGOUT(timeout, file, ..., file) N

Database Drivers 68

 COMMIT N

 ROLLBACK N
Null Data Processing Supported

 NULL(field) N

 SETNULL(field) N

 SETNONNULL(field) N

Notes
1 If your application creates a Clipper file, you may require additional NAME information for

these Clipper data types:

 For a Clipper numeric field, use the Clarion REAL data type. Then in the NAME attribute
(the External Name field on the Attributes tab in the Field Properties dialog), specify
'NumericFieldName=N(Precision,DecimalPlaces)' where NumericFieldName is the name
of the field, Precision is the precision of the field and DecimalPlaces is the number of
decimal places. See Data Types above for more information.

 For a Clipper logical field, use the Clarion BYTE data type. See Data Types above for
more information. See the Miscellaneous section for tips on reading the data from the
field.

 For a Clipper date field, use the Clarion DATE data type. See Data Types above for more
information.

2 When the driver deletes a record from a Clipper database, the record is not physically
removed, instead the driver marks it inactive. Memo fields are not physically removed
from the memo file, however they cannot be retrieved if they refer to an inactive record.
To remove records and memo fields permanently, execute a PACK(file).

To those programmers familiar with Clipper, this driver processes deleted records
consistent with the way Clipper processes them after the SET DELETED ON
command is issued. Records marked for deletion are ignored from processing by
executable code statements, but remain in the data file.

3 MEMO field declarations require a pointer field in the file's record structure. Declare the
pointer field as a STRING(10) or a LONG. This field will be stored in the .DBF file
containing the offset of the memo in the .DBT file. The MEMO declaration must have a
NAME() attribute naming the pointer field. See Data Types above for more information.

Clipper File Driver 69

4 In Clipper it is legal to enter multiple records with duplicates of the unique key
components. However, only the first of these records is indexed. So processing in key
order only shows this first record. If you delete a record, then enter a new record with the
same key value, the key file continues to point at the deleted record rather than the new
record. In this situation, the Clipper file driver driver changes the key file to point at the
active record rather than the deleted record. This means that if you use a Clipper
program to delete a unique record, then insert a duplicate of this record, the new record
is invisible when processing in key order until a pack is done. If you do the same process
in a Clarion program, the new record is visible when processing in key order.

5 When building dynamic indexes, the components may take one of two forms:
BUILD(DynNdx, '+Pre:FLD1, -Pre:FLD2')

 This form specifies the names of the fields on which to build the index. The field names
must appear as specified in the fields' NAME() attribute if supplied, or must be the label
name. A prefix may be used for compatibility with Clarion conventions but is ignored.
BUILD(DynNdx, 'T[Expression]')

 This form specifies the type and Expression used to build an index--see Miscellaneous--
Key Definition below.

6 The COPY() command copies data and memo files using newfile, which may specify a
new file name or directory. Key or index files are copied if the newfile is a subdirectory
specification. To copy an index file to a new file, use a special form of the copy
command:
COPY(file,'<index>|<newfile>')

 This returns File Not Found if an invalid index is passed. The COPY command assumes
a default extension of .NTX for both the source and the target file names if none is
specified. If you require a file name without an extension, terminate the name with a
period. Given the file structure:

Clar2 FILE,CREATE,DRIVER('Clipper'),PRE(CL2)
NumKey KEY(+CL2:Num),DUP
StrKey KEY(+CL2:Str1)
StrKey2 KEY(+CL2:Str2)
Amemo MEMO(100), NAME('mem')
Record RECORD
Num STRING(@n-_9.2)
STR1 STRING(2)
STR2 STRING(2)
Mem STRING(10)

END
END

Database Drivers 70

The following commands copy this file definition to A:
COPY(Clar2,'A:\CLAR2')
COPY(Clar2,'StrKey|A:\STRKEY')
COPY(Clar2,'StrKey2|A:\STRKEY2')
COPY(Clar2,'NumKey|A:\NUMKEY')

 After these calls, the following files would exist on drive A: CLAR2.DBF, CLAR2.DBT,
STRKEY.NTX, STRKEY2.NTX, and NUMKEY.NTX.

7 You do not need SHARE (or VSHARE) in any environment (for example, Novell) that
supplies file locking as part of the operating system.

8 The RENAME command copies the data and memo files using newfile, which may
specify a new file name or directory path. Key and index files must be renamed using the
same syntax as the COPY command, above.

9 The ADD statement tests for duplicate keys before modifying the data file or its
associated KEY files. Consequently it is slower than APPEND which performs no checks
and does not update KEYs. When adding large amounts of data to a database use
APPEND...BUILD in preference to ADD.

10 Clipper performs record locking by locking the entire record within the data file. This
prevents read access to other processes. Therefore we recommend minimizing the
amount of time for which a record is held.

11 Although the driver supports these functions, we do not recommend their use. They must
physically access the files and add overhead. Instead, test the value returned by
ERRORCODE() after each sequential access. NEXT or PREVIOUS post Error 33
(Record Not Available) if an attempt is made to access a record beyond the end or
beginning of the file.

12 There is no distinction between file pointers and key pointers; they both return the record
number for any given record.

13 POSITION(file) returns a STRING(12). POSITION(key) returns a STRING the size of the
key fields + 4 bytes.

14 Under Clipper, the RECORDS() function reports the same number of records for the data
file and its keys and indexes. Usually there will be no difference in the number of records
unless the INDEX is out of date. Because the DELETE statement does not physically
remove records, the number of records reported by the RECORDS() function includes
inactive records. Exercise care when using this function.

15 See also PROP:Logout in the Language Reference.

16 THREADed files consume additional file handles for each thread that accesses the file.

Clipper File Driver 71

Clipper:Other

Boolean Evaluation
✟ Clipper allows a logical field to accept one of nine possible values (y,Y,n,N,t,T,f,F or a

space character). The space character is neither true nor false. When using a logical field
from a preexisting database in a logical expression, account for all these possibilities.
Remember that when a STRING field is used as an expression, it is true if it contains any
data and false if it is equal to zero or blank. Therefore, to evaluate a Logical field's truth,
the expression should be true if the field contains any of the "true" characters (T,t,Y, or y).
For example, if a Logical field were used to specify a product as taxable or nontaxable,
the expression to evaluate its truth would be:

 (If Condition):
Taxable='T' OR Taxable='t' OR Taxable='Y' OR Taxable='y'

Large MEMOs
✟ Clarion supports MEMO fields up to a maximum of 64K. If you have an existing file which

includes a memo greater than 64K, you can use the file but not modify the large MEMOs.

✟ You can determine when your application encounters a large MEMO by detecting when
the memo pointer variable is non-blank, but the memo appears to be blank. Error 47 (Bad
Record Declaration) is posted. If you attempt to update such a record, any modification to
the MEMO field is ignored.

Long Field Names
✟ Clipper supports a maximum of 10 characters in a field name. If you require more, use an

External Name with 10 characters or less.

Sort Sequence
✟ The Clipper driver supports international sort orders, however, to maintain compatibility

with Clipper's international sort order, remove the CLADIGRAPH= line from ..\(C60
root)\BIN\Clarion6.ENV file.

Key Definition
✟ Clipper supports the use of expressions to define keys. Within the Dictionary Editor, you

can place the expression in the external name field in the Key Properties dialog. The
format of the external name is:

'FileName=T[Expression]'

Database Drivers 72

 Where FileName represents the name of the index file (which can contain a path and file
extension), and T represents the type of the index. Valid types are: C = character, D =
date, and N = numeric. If the type is D or N then Expression can name only one field.

 String expressions may use the '+' operator to concatenate multiple string arguments.
Numeric expressions use the '+' or '-' operators with their conventional meanings. The
maximum length of a Clipper expression is 250 characters.

 The expression may refer to multiple fields in the record, and may contain xBase
functions. Square brackets must enclose the expression. The currently supported
functions appear below. If the driver encounters an unsupported Xbase function in a
preexisting file, it posts error 76 'Invalid Index String' when the file is opened for keys and
static indexes.

Supported xBase Key Definition Functions

ALLTRIM(string) Removes leading and trailing spaces.

CTOD(string) Converts a string key to a date. The string must be in the format
mm/dd/yy; the result takes the form 'yyyymmdd'. The yyyy element of the
date defaults to the twentieth century. An invalid date results in a key
containing blanks.

DELETED() Returns TRUE if the record is deleted.

DESCEND(string|date|numeric)

Inverts the argument, and creates descending Clipper indexes.

DTOC(date) Converts a date key to string format 'mm/dd/yy'

DTOS(date) Converts a date key to string format 'yyyymmdd'

FIXED(float) Converts a float key to a numeric.

FLOAT(numeric) Converts a numeric key to a float.

IIF(bool,val1,val2) Returns val1 if the first parameter is TRUE, otherwise returns val2.

LEFT(string, n) Returns the leftmost n characters of the string key as a string of length n.

LOWER(string) Converts a string key to lower case.

LTRIM(string) Removes spaces from the left of a string.

RECNO() Returns the current record number.

RIGHT(string, n) Returns the rightmost n characters of the string key as a string of length n.

RTRIM(string) Removes spaces from the right of a string.

Clipper File Driver 73

STR(numeric [,length[, decimal places]])

Converts a numeric to a string. The length of the string and the number
of decimal places are optional. The default string length is 10, and the
number of decimal places is 0.

SUBSTR(string,offset,n)

Returns a substring of the string key starting at offset and of n characters
in length.

TRIM(string) Removes spaces from the right of a string (identical to RTRIM).

UPPER(string) Converts a string key to upper case.

VAL(string) Converts a string key to a numeric.

Database Drivers 74

dBaseIII File Driver 75

dBaseIII Database Driver
dBaseIII:Specifications

The dBase3 file driver is compatible with dBase III. The default data file extension is *.DBF.

Keys and Indexes exist as separate files from the data file. Keys are dynamic--they automatically
update as the data file changes. Indexes are static--they do not automatically update, but instead
require the BUILD statement for updating. The default file extension for the index file is *.NDX.
International sort orders are supported.

The driver stores records as fixed length. It stores memo fields in a separate file. The memo file
name takes the first eight characters of the File Label plus an extension of .DBT.

Files: C60DB3XL.LIB Windows Static Link Library

 C60DB3X.LIB Windows Export Library

 C60DB3X.DLL Windows Dynamic Link Library

dBase III is probably the most common file format for PC database applications.
These days, even desktop publishing programs can import dBase III compatible
.DBF files. If the main task of your application is to export data files for other
applications about which you know nothing, you should consider this format.

dBaseIII:Data Types

The xBase file format stores all data as ASCII strings. You may either specify STRING types with
declared pictures for each field, or specify native Clarion types, which the driver converts
automatically.

dBase data type Clarion data type STRING w/ picture
Date DATE STRING(@D12)
*Numeric REAL STRING(@N-_p.d)
*Logical BYTE STRING(1)
Character STRING STRING
*Memo MEMO MEMO

Database Drivers 76

If your application reads and writes to existing files, a pictured STRING will suffice. However, if
your application creates a dBase III file, you may require additional information for these dBase III
types:

✟ To create a numeric field in the Data Dictionary, choose the REAL data type. In the
External Name field on the Attributes tab, specify
'NumericFieldName=N(Precision,DecimalPlaces)' where NumericFieldName is the name
of the field, Precision is the precision of the field and DecimalPlaces is the number of
decimal places. With a REAL data type, you cannot access the Character or Places fields
in the Field definition, you must specify those attributes with an expression in the External
Name Field on the Attributes tab.

 For example, if you want to create a field called Number with nine significant digits and
two decimal places, enter 'Number=N(9,2) in the External Name field on the Attributes
tab of the Field properties in the Data Dictionary.

 If you're hand coding a native Clarion data type, add the NAME attribute using the same
syntax.

 If you're hand coding a STRING with picture, STRING(@N-_9.2), NAME('Number'),
where Number is the field name.

 To create a logical field, using the data dictionary, choose the BYTE data type. There are
no special steps; however, see the miscellaneous section for tips on reading the data
from the field.

 If you're hand coding a STRING with picture, add the NAME attribute: STRING(1),
NAME('LogFld = L').

 To create a date field, using the data dictionary, choose the DATE data type, rather than
LONG, which you usually use for the TopSpeed or Clarion file formats.

 MEMO field declarations require the a pointer field in the file's record structure. Declare
the pointer field as a STRING(10) or a LONG. This field will be stored in the .DBF file
containing the offset of the memo in the .DBT file. The MEMO declaration must have a
NAME() attribute naming the pointer field. An example file declaration follows:

File FILE, DRIVER('dBase3')
Memo1 MEMO(200),NAME('Notes')
Memo2 MEMO(200),NAME('Text')
Rec RECORD
Mem1Ptr LONG,NAME('Notes')
Mem2Ptr STRING(10),NAME('Text')

END
END

dBaseIII File Driver 77

Use the File Import Utility in the Clarion Dictionary Editor to define your files.

dBaseIII:File Specifications/Maximums
File Size: 2,000,000,000 bytes
Records per File: 1,000,000,000
Record Size: 4,000 bytes
Field Size

Character: 254 bytes
Date: 8 bytes
Logical: 1 byte
Numeric: 20 bytes including decimal point
Memo: 64K (see note)

Fields per Record: 128
Keys/Indexes per File: No Limit
Key Sizes

Character: 100 bytes
Numeric, Date: 8 bytes

Memo fields per File: Dependent on available memory
Open Files: Operating system dependent

Database Drivers 78

dBaseIII:Driver Strings
There are switches or "driver strings" you can set to control the way your application creates,
reads, and writes files with a specific driver. Driver strings are simply messages or parameters
that are sent to the file driver at run-time to control its behavior. See Common Driver Features--
Driver Strings for an overview of these runtime Database Driver switches and parameters.

Some driver strings have no effect after the file is open, so no SEND function
syntax is listed for those strings. However, the SEND function syntax to return the
value of the switch is listed for all driver strings.

The dBaseIII Driver supports the following Driver Strings:

BUFFERS

 DRIVER('DBASE3', '/BUFFERS = n')

 [Status" =] SEND(file, 'BUFFERS [= n]')

 Sets the size of the buffer used to read and write to the file, where the buffer size is (n * 512
bytes). Use the /BUFFERS driver string to increase the buffer size if access is slow. Maximum
buffer size is 4,294,967,264. SEND returns the size of the buffer in bytes.

The default is three buffers of 1024 bytes each. Increasing the number of buffers
will not increase performance when a file is shared by multiple users.

RECOVER

 DRIVER('DBASE3', '/RECOVER')

 [Status" =] SEND(file, 'RECOVER')

Equivalent to the Xbase RECALL command, which recovers records marked for deletion. When
using the dBaseIV driver, the DELETE statement flags a record as "inactive." The driver does not
remove the record until the PACK command is executed.

RECOVER is evaluated each time you open the file if you add the driver string to the data
dictionary. When the driver recovers the records previously marked for deletion, you must
manually rebuild keys and indexes with the BUILD statement.

dBaseIII File Driver 79

IGNORESTATUS

 DRIVER('DBASE3', '/IGNORESTATUS = on | off ')

 [Status" =] SEND(file, 'IGNORESTATUS [on | off]')

When set on, the driver does not skip deleted records when accessing the file with GET, NEXT,
and PREVIOUS in file order. It also enables a PUT on a deleted or held record. IGNORESTATUS
requires opening the file in exclusive mode. SEND returns the IGNORESTATUS setting (ON or
OFF) in the form of a STRING(3).

DELETED

 [Status" =] SEND(file, 'DELETED')

For use only with the SEND command, when IGNORESTATUS is on. Returns the status of the
current record. If deleted, the return string is "ON" and if not, "OFF."

OMNIS

 DRIVER('DBASE3', '/OMNIS')

 SEND(file, 'OMNIS')

Specifies OMNIS file header and file delimiter compatibility. SEND is only valid when the file is
closed; it returns nothing.

ZEROY2K

DRIVER('DBASE3', '/ZEROY2K = on | off')

[Status" =] SEND(file, 'ZEROY2K [on | off]')

In the header of dBase3files there is a field that stores the year that the file was last edited. Some
applications store this as the number of years since 1900. Others store it as a 2 digit year. So for
dates in the year 2000 some applications store 0 in this field and others 100. Clarion will read files
with either. However it will write 100. Writing 100 may make the files unreadable by products that
only support 0. To change this behavior you can with use a driver string of ZEROY2K, a SEND
command or a setting in the WIN.INI file.

The driver will store 0 in the DBF file header when the WINI.INI setting is set to 1 or 'on' in a
SEND command or driver string, otherwise a 100 will be stored in the DBF file header.

Note: The SEND command causes the setting to be set for all files
that use that driver, not just for that file.

Database Drivers 80

Example:
WIN.INI
;Sets all dBase3 files to store a 0 in the DBF file header
[CWDBASE3]
ZEROY2K=1
!SEND command
SEND('Orders', ZEROY2K='on' !sets Orders file to store 0 in the DBF file header
SEND('Orders', ZEROY2K='off' !sets Orders file to store 100 in the DBF file header
!Driver String Orders
FILE, DRIVER('dbase3', '/ZEROY2K=on'),PRE(ORD) !SETS Orders file to store 030 –

File Attributes Supported

 CREATE Y

 DRIVER(filetype [,driver string]) Y

 NAME Y

 ENCRYPT N

 OWNER(password) N

 RECLAIM N1

 PRE(prefix) Y

 BINDABLE Y

 THREAD Y12

 EXTERNAL(member) Y

 DLL([flag]) Y

 OEM Y
File Structures Supported

 INDEX Y

 KEY Y

 MEMO Y

 BLOB N

 RECORD Y

dBaseIII File Driver 81

Index, Key, Memo Attributes Supported

 BINARY N

 DUP Y2

 NOCASE Y

 OPT N

 PRIMARY Y

 NAME Y

 Ascending Components Y

 Descending Components Y

 Mixed Components N
Field Attributes Supported

 DIM N

 OVER Y

 NAME Y
File Procedures Supported

 BOF(file) Y8

 BUFFER(file) N

 BUILD(file) Y

 BUILD(key) Y

 BUILD(index) Y

 BUILD(index, components) Y3

 BUILD(index, components, filter) N

 BYTES(file) N

 CLOSE(file) Y

 COPY(file, new file) Y4

 CREATE(file) Y

 DUPLICATE(file) Y

Database Drivers 82

 DUPLICATE(key) Y

 EMPTY(file) Y

 EOF(file) Y8

 FLUSH(file) Y

 LOCK(file) N

 NAME(label) Y

 OPEN(file, access mode) Y5

 PACK(file) Y

 POINTER(file) Y9

 POINTER(key) Y9

 POSITION(file) Y10

 POSITION(key) Y10

 RECORDS(file) Y11

 RECORDS(key) Y11

 REMOVE(file) Y

 RENAME(file, new file) Y4

 SEND(file, message) Y

 SHARE(file, access mode) Y5

 STATUS(file) Y

 STREAM(file) Y

 UNLOCK(file) N

Record Access Supported

 ADD(file) Y6

 ADD(file, length) N

 APPEND(file) Y6

 APPEND(file, length) N

 DELETE(file) Y1

dBaseIII File Driver 83

 GET(file,key) Y

 GET(file, filepointer) Y

 GET(file, filepointer, length) N

 GET(key, keypointer) Y

 HOLD(file) Y7

 NEXT(file) Y

 NOMEMO(file) Y

 PREVIOUS(file) Y

 PUT(file) Y

 PUT(file, filepointer) Y

 PUT(file, filepointer, length) N

 RELEASE(file) Y

 REGET(file,string) Y

 REGET(key,string) Y

 RESET(file,string) Y

 RESET(key,string) Y

 SET(file) Y

 SET(file, key) Y

 SET(file, filepointer) Y

 SET(key) Y

 SET(key, key) Y

 SET(key, keypointer) Y

 SET(key, key, filepointer) Y

 SKIP(file, count) Y

 WATCH(file) Y
Transaction Processing Supported

 LOGOUT(timeout, file, ..., file) N

Database Drivers 84

 COMMIT N

 ROLLBACK N
Null Data Processing Supported

 NULL(field) N

 SETNULL(field) N

 SETNONNULL(field) N

Notes
1 When the driver deletes a record from a dBase III database, the record is not physically

removed, instead the driver marks it inactive. Memo fields are not physically removed
from the memo file, however they cannot be retrieved if they refer to an inactive record.
Key values are removed from the index files. To remove records and memo fields
permanently, execute a PACK(file).

To those programmers familiar with dBase III, this driver processes deleted
records consistent with the way dBase III processes them after the SET DELETED
ON command is issued. Records marked for deletion are ignored from processing
by executable code statements, but remain in the data file.

2 dBase III does not support any form of unique index. So the DUP attribute must be on
all keys.

3 When building dynamic indexes, the components may take one of two forms:
BUILD(DynNdx, '+Pre:FLD1, -Pre:FLD2')

 This form specifies the names of the fields on which to build the index. The field names
must appear as specified in the fields' NAME() attribute if supplied, or must be the label
name. A prefix may be used for compatibility with Clarion conventions but is ignored.

BUILD(DynNdx, 'T[Expression]')

 This form specifies the type and Expression used to build an index--see Miscellaneous--
Key Definition below.

dBaseIII File Driver 85

4 These commands copy data and memo files using newfile, which may specify a new file
name or directory. Key or index files are copied if the newfile is a subdirectory
specification. To copy an index file to a new file, use a special form of the copy or rename
command:

COPY(file,'<index>|<newfile>')

 This returns File Not Found if an invalid index is passed. The COPY command assumes
a default extension of ".NDX" for both the source and the target file names if none is
specified. If you require a file name without an extension, terminate the name with a
period. Given the file structure:

Clar2 FILE,CREATE,DRIVER('dBase3'),PRE(CL2)
NumKey KEY(+CL2:Num),DUP
StrKey KEY(+CL2:Str1)
StrKey2 KEY(+CL2:Str2)
AMemo MEMO(100), NAME('mem')
Record RECORD
Num STRING(@n-_9.2)
STR1 STRING(2)
STR2 STRING(2)
Mem STRING(10)

END
END

The following commands copy this file definition to A:
COPY(Clar2,'A:\CLAR2')
COPY(Clar2,'StrKey|A:\STRKEY')
COPY(Clar2,'StrKey2|A:\STRKEY2')
COPY(Clar2,'NumKey|A:\NUMKEY')

 After these calls, the following file would exist on drive A: CLAR2.DBF, CLAR2.DBT,
STRKEY.NDX, STRKEY2.NDX, and NUMKEY.NDX.

5 You do not need SHARE (or VSHARE) in any environment (for example, Novell) that
supplies file locking as part of the operating system.

6 The ADD statement tests for duplicate keys before modifying the data file or its
associated KEY files. Consequently it is slower than APPEND which performs no checks
and does not update KEYs. When adding large amounts of data to a database use
APPEND...BUILD in preference to ADD.

7 dBase III performs record locking by locking the entire record within the data file. This
prevents read access to other processes. Therefore we recommend minimizing the
amount of time for which a record is held.

Database Drivers 86

8 Although the driver supports these functions, we do not recommend their use. They must
physically access the files and add overhead. Instead, test the value returned by
ERRORCODE() after each sequential access. NEXT or PREVIOUS post Error 33
(Record Not Available) if an attempt is made to access a record beyond the end or
beginning of the file.

9 There is no distinction between file pointers and key pointers; they both return the record
number for any given record.

10 POSITION(file) returns a STRING(12). POSITION(key) returns a STRING the size of the
key fields + 4 bytes.

11 Under dBase III, the RECORDS() function reports the same number of records for the
data file and its keys and indexes. Usually there will be no difference in the number of
records unless the INDEX is out of date. Because the DELETE statement does not
physically remove records, the number of records reported by the RECORDS() function
includes inactive records. Exercise care when using this function.

12 THREADed files consume additional file handles for each thread that accesses the file.

dBaseIII File Driver 87

dBaseIII:Other

Boolean Evaluation
✟ dBase III allows a logical field to accept one of nine possible values (y,Y,n,N,t,T,f,F or a

space character). The space character is neither true nor false. When using a logical field
from a preexisting database in a logical expression, account for all these possibilities.
Remember that when a STRING field is used as an expression, it is true if it contains any
data and false if it is equal to zero or blank. Therefore, to evaluate a Logical field's truth,
the expression should be true if the field contains any of the "true" characters (T,t,Y, or y).
For example, if a Logical field were used to specify a product as taxable or nontaxable,
the expression to evaluate its truth would be:

 (If Condition):
Taxable='T' OR Taxable='t' OR Taxable='Y' OR Taxable='y'

Large MEMOs
✟ Clarion supports MEMO fields up to a maximum of 64K. If you have an existing file which

includes a memo greater than 64K, you can use the file but not modify the large MEMOs.

✟ You can determine when your application encounters a large MEMO by detecting when
the memo pointer variable is non-blank, but the memo appears to be blank. Error 47 (Bad
Record Declaration) is posted, and any modification to the MEMO field is ignored.

Long Field Names
✟ dBase III supports a maximum of 10 characters in a field name. If you require more, use

an External Name with 10 characters or less.

International Sort Sequence
✟ The dBaseIII driver supports international sort orders, however, to maintain compatibility

with dBaseIII's international sort order, remove the CLADIGRAPH= line from
..\BIN\CLARION6.ENV file.

Database Drivers 88

KEY Definitions
✟ dBase III supports the use of expressions to define keys. Within the Dictionary Editor, you

can place the expression in the external name field in the Key Properties dialog. The
general format of the external name is :

'FileName=T[Expression]'

 Where FileName represents the name of the index file (which can contain a path and file
extension), and T represents the type of the index. Valid types are: C = character, D =
date, and N = numeric. If the type is D or N then Expression can name only one field.

 String expressions may use the '+' operator to concatenate multiple string arguments.
Numeric expressions use the '+' or '-' operators with their conventional meanings. The
maximum length of a dBase III expression is 250 characters.

The expression may refer to multiple fields in the record, and contain xBase functions.
Square brackets must enclose the expression. The currently supported functions appear
below. If the driver encounters an unsupported Xbase function in a preexisting file, it
posts error 76 'Invalid Index String' when the file is opened for keys and static indexes.

Supported xBase Key Defintion Functions
ALLTRIM(string) Removes leading and trailing spaces.

CTOD(string) Converts a string key to a date. The string must be in the format
mm/dd/yy; the result takes the form 'yyyymmdd'. The yyyy element of the
date defaults to the twentieth century. An invalid date results in a key
containing blanks.

DELETED() Returns TRUE if the record is deleted.

DTOC(date) Converts a date key to string format 'mm/dd/yy.'

DTOS(date) Converts a date key to string format 'yyyymmdd.'

FIXED(float) Converts a float key to a numeric.

FLOAT(numeric) Converts a numeric key to a float.

IIF(bool,val1,val2) Returns val1 if the first parameter is TRUE, otherwise returns val2.

LEFT(string, n) Returns the leftmost n characters of the string key as a string of length n.

LOWER(string) Converts a string key to lower case.

LTRIM(string) Removes spaces from the left of a string.

RECNO() Returns the current record number.

dBaseIII File Driver 89

RIGHT(string, n) Returns the rightmost n characters of the string key as a string of length n.

RTRIM(string) Removes spaces from the right of a string.

STR(numeric [,length [, decimal places]])

Converts a numeric to a string. The length of the string and the number
of decimal places are optional. The default string length is 10, and the
number of decimal places is 0.

SUBSTR(string,offset,n)

Returns a substring of the string key starting at offset and of n characters
in length.

TRIM(string) Removes spaces from the right of a string (identical to RTRIM).

UPPER(string) Converts a string key to upper case.

VAL(string) Converts a string key to a numeric.

Database Drivers 90

dbaseIV File Driver 91

dBaseIV Database Driver
dBaseIV:Specifications

The dBase4 file driver is compatible with dBase IV. The default data file extension is *.DBF.

Keys and Indexes exist as separate files from the data file. Keys are dynamic--they automatically
update as the data file changes. Indexes are static--they do not automatically update, but instead
require the BUILD statement for updating. The default file extension for the index file is *.NDX.

dBase IV supports multiple index files, whose extension is *.MDX. The miscellaneous section
describes procedures for using .MDX files.

The driver stores records as fixed length. It stores memo fields in a separate file. The memo file
name takes the first eight characters of the File Label plus an extension of .DBT.

Files: C60DB4XL.LIB Windows Static Link Library

 C60DB4X.LIB Windows Export Library

 C60DB4X.DLL Windows Dynamic Link Library

dBase IV was never as widely adopted as dBase III. Choose this driver only when
you must share data with an end-user using dBase IV.

dBaseIV:Data Types

The xBase file format stores all data as ASCII strings. You may either specify STRING types with
declared pictures for each field, or specify native Clarion types, which the driver converts
automatically.

dBase data type Clarion data type STRING w/ picture
Date DATE STRING(@D12)
*Numeric REAL STRING(@N-_p.d)
*Logical BYTE STRING(1)
Character STRING STRING
*Memo MEMO MEMO

Database Drivers 92

If your application reads and writes to existing files, a pictured STRING will suffice. However, if
your application creates a dBase IV file, you may require additional information for these dBase
IV types:

✟ To create a numeric field in the Data Dictionary, choose the REAL data type. In the
External Name field on the Attributes tab, specify
'NumericFieldName=N(Precision,DecimalPlaces)' where NumericFieldName is the name
of the field, Precision is the precision of the field and DecimalPlaces is the number of
decimal places. With a REAL data type, you cannot access the Character or Places fields
in the Field definition, you must specify those attributes with an expression in the External
Name Field on the Attributes tab.

 For example, if you want to create a field called Number with nine significant digits and
two decimal places, enter 'Number=N(9,2) in the External Name field on the Attributes
tab of the Field properties in the Data Dictionary.

 If you're hand coding a native Clarion data type, add the NAME attribute using the same
syntax.

 If you're hand coding a STRING with picture, STRING(@N-_9.2), NAME('Number'),
where Number is the field name.

✟ To create a logical field, using the data dictionary, choose the BYTE data type. There are
no special steps; however, see the miscellaneous section for tips on reading the data
from the field.

 If you're hand coding a STRING with picture, add the NAME attribute: STRING(1),
NAME('LogFld = L').

✟ To create a date field, using the data dictionary, choose the DATE data type, rather than
LONG, which you usually use for the TopSpeed or Clarion file formats.

✟ MEMO field declarations require the a pointer field in the file's record structure. Declare
the pointer field as a STRING(10) or a LONG. This field will be stored in the .DBF file
containing the offset of the memo in the .DBT file. The MEMO declaration must have a
NAME() attribute naming the pointer field. An example file declaration follows:

File FILE, DRIVER('dBase4')
Memo1 MEMO(200),NAME('Notes')
Memo2 MEMO(200),NAME('Text')
Rec RECORD
Mem1Ptr LONG,NAME('Notes')
Mem2Ptr STRING(10),NAME('Text')

END
END

Use the File Import Utility in the Clarion Dictionary Editor to define your files.

dbaseIV File Driver 93

dBaseIV:File Specifications/Maximums

File Size: 2,000,000,000 bytes
Records per File: 1,000,000,000
Record Size: 4,000 bytes
Field Size

Character: 254 bytes
Date: 8 bytes
Logical: 1 byte
Numeric: 20 bytes including decimal point
Float: 20 bytes including decimal point
Memo: 64K (see note)

Fields per Record:512
Keys/Indexes per File:

.NDX: No Limit

.MDX 47 tags per .MDX files
Key Sizes

Character: 100 bytes
Numeric, Date: 8 bytes

Memo fields per File: Dependent on available memory
Open Files: Operating system dependent

Database Drivers 94

dBaseIV:Driver Strings
There are switches or "driver strings" you can set to control the way your application creates,
reads, and writes files with a specific driver. Driver strings are simply messages or parameters
that are sent to the file driver at run-time to control its behavior. See Common Driver Features--
Driver Strings for an overview of these runtime Database Driver switches and parameters.

Some driver strings have no effect after the file is open, so no SEND function
syntax is listed for those strings. However, the SEND function syntax to return the
value of the switch is listed for all driver strings.

The dBaseIV Driver supports the following Driver Strings:

BUFFERS

 DRIVER('DBASE4', '/BUFFERS = n')

 [Status" =] SEND(file, 'BUFFERS [= n]')

 Sets the size of the buffer used to read and write to the file, where the buffer size is (n * 512
bytes). Use the /BUFFERS driver string to increase the buffer size if access is slow. Maximum
buffer size 4,294,967,264. SEND returns the size of the buffer in bytes.

The default is three buffers of 1024 bytes each. Increasing the number of buffers
will not increase performance when a file is shared by multiple users.

dbaseIV File Driver 95

RECOVER

 DRIVER('DBASE4', '/RECOVER')

 [Status" =] SEND(file, 'RECOVER')

Equivalent to the Xbase RECALL command, which recovers records marked for deletion. When
using the dBaseIV driver, the DELETE statement flags a record as "inactive." The driver does not
remove the record until the PACK command is executed.

RECOVER is evaluated each time you open the file if you add the driver string to the data
dictionary. When the driver recovers the records previously marked for deletion, you must
manually rebuild keys and indexes with the BUILD statement.

IGNORESTATUS

 DRIVER('DBASE4', '/IGNORESTATUS = on | off ')

 [Status" =] SEND(file, 'IGNORESTATUS [on | off]')

When set on, the driver does not skip deleted records when accessing the file with GET, NEXT,
and PREVIOUS in file order. It also enables a PUT on a deleted or held record. IGNORESTATUS
requires opening the file in exclusive mode. SEND returns the IGNORESTATUS setting (ON or
OFF) in the form of a STRING(3).

DELETED

 [Status" =] SEND(file, 'DELETED')

For use only with the SEND command, when IGNORESTATUS is on. Returns the status of the
current record. If deleted, the return string is "ON" and if not, "OFF."

ZEROY2K

DRIVER('DBASE4', '/ZEROY2K = on | off')

[Status" =] SEND(file, 'ZEROY2K [on | off]')

In the header of dBaase4 files there is a field that stores the year that the file was last edited.
Some applications store this as the number of years since 1900. Others store it as a 2 digit year.
So for dates in the year 2000 some applications store 0 in this field and others 100. Clarion will
read files with either. However it will write 100. Writing 100 may make the files unreadable by
products that only support 0. To change this behavior you can with use a driver string of
ZEROY2K, a SEND command or a setting in the WIN.INI file.

Database Drivers 96

The driver will store 0 in the DBF file header when the WINI.INI setting is set to 1 or 'on' in a
SEND command or driver string, otherwise a 100 will be stored in the DBF file header.

Note: The SEND command causes the setting to be set for all files
that use that driver, not just for that file.

Example:
WIN.INI
;Sets all dBase4 files to store a 0 in the DBF file header
[CWDBASE4]
ZEROY2K=1

!SEND command
SEND('Orders', ZEROY2K='on' !sets Orders file to store 0 in the DBF file header
SEND('Orders', ZEROY2K='off' !sets Orders file to store 100 in the DBF file header

!Driver String
Orders FILE, DRIVER('dbase4', '/ZEROY2K=on'),PRE(ORD) !SETS Orders file to store 0

dbaseIV File Driver 97

dBaseIV:Supported Commands and Attributes

File Attributes Supported

 CREATE Y

 DRIVER(filetype [,driver string]) Y

 NAME Y

 ENCRYPT N

 OWNER(password) N

 RECLAIM N1

 PRE(prefix) Y

 BINDABLE Y

 THREAD Y12

 EXTERNAL(member) Y

 DLL([flag]) Y

 OEM Y
File Structures Supported

 INDEX Y

 KEY Y

 MEMO Y

 BLOB N

 RECORD Y
Index, Key, Memo Attributes Supported

 BINARY N

 DUP Y2

 NOCASE Y

 OPT N

 PRIMARY Y

Database Drivers 98

 NAME Y

 Ascending Components Y

 Descending Components Y

 Mixed Components N
Field Attributes Supported

 DIM N

 OVER Y

 NAME Y
File Procedures Supported

 BOF(file) Y8

 BUFFER(file) N

 BUILD(file) Y

 BUILD(key) Y

 BUILD(index) Y

 BUILD(index, components) Y3

 BUILD(index, components, filter) N

 BYTES(file) N

 CLOSE(file) Y

 COPY(file, new file) Y4

 CREATE(file) Y

 DUPLICATE(file) Y

 DUPLICATE(key) Y

 EMPTY(file) Y

 EOF(file) Y8

 FLUSH(file) Y

 LOCK(file) N

 NAME(label) Y

dbaseIV File Driver 99

 OPEN(file, access mode) Y5

 PACK(file) Y

 POINTER(file) Y9

 POINTER(key) Y9

 POSITION(file) Y10

 POSITION(key) Y10

 RECORDS(file) Y11

 RECORDS(key) Y11

 REMOVE(file) Y

 RENAME(file, new file) Y4

 SEND(file, message) Y

 SHARE(file, access mode) Y5

 STATUS(file) Y

 STREAM(file) Y

 UNLOCK(file) N

Record Access Supported

 ADD(file) Y6

 ADD(file, length) N

 APPEND(file) Y6

 APPEND(file, length) N

 DELETE(file) Y1

 GET(file,key) Y

 GET(file, filepointer) Y

 GET(file, filepointer, length) N

 GET(key, keypointer) Y

 HOLD(file) Y7

 NEXT(file) Y

Database Drivers 100

 NOMEMO(file) Y

 PREVIOUS(file) Y

 PUT(file) Y

 PUT(file, filepointer) Y

 PUT(file, filepointer, length) N

 RELEASE(file) Y

 REGET(file,string) Y

 REGET(key,string) Y

 RESET(file,string) Y

 RESET(key,string) Y

 SET(file) Y

 SET(file, key) Y

 SET(file, filepointer) Y

 SET(key) Y

 SET(key, key) Y

 SET(key, keypointer) Y

 SET(key, key, filepointer) Y

 SKIP(file, count) Y

 WATCH(file) Y
Transaction Processing Supported

 LOGOUT(timeout, file, ..., file) N

 COMMIT N

 ROLLBACK N
Null Data Processing Supported

 NULL(field) N

 SETNULL(field) N

 SETNONNULL(field) N

dbaseIV File Driver 101

Notes
1 When the driver deletes a record from a dBase IV database, the record is not physically

removed, instead the driver marks it inactive. Memo fields are not physically removed
from the memo file, however they cannot be retrieved if they refer to an inactive record.
Key values are removed from the index files. To remove records and memo fields
permanently, execute a PACK(file).

To those programmers familiar with dBase IV, this driver processes deleted
records consistent with the way dBase IV processes them after the SET DELETED
ON command is issued. Records marked for deletion are ignored from processing
by executable code statements, but remain in the data file.

2 In dBase IV it is legal to enter multiple records with duplicates of the unique key
components. However, only the first of these records is indexed. So processing in key
order only shows this first record. If you delete a record, then enter a new record with the
same key value, the key file continues to point at the deleted record rather than the new
record. In this situation, the dBase IV file driver driver changes the key file to point at the
active record rather than the deleted record. This means that if you use a dBase IV
program to delete a unique record, then insert a duplicate of this record, the new record
is invisible when processing in key order until a pack is done. If you do the same process
in a Clarion program, the new record is visible when processing in key order.

3 When building dynamic indexes, the components may take one of two forms:
BUILD(DynNdx, '+Pre:FLD1, -Pre:FLD2')

 This form specifies the names of the fields on which to build the index. The field names
must appear as specified in the fields' NAME() attribute if supplied, or must be the label
name. A prefix may be used for compatibility with Clarion conventions but is ignored.

BUILD(DynNdx, 'T[Expression]')

 This form specifies the type and Expression used to build an index--see Miscellaneous--
Key Definition below.

4 These commands copy data and memo files using newfile, which may specify a new file
name or directory. Key or index files are copied if the newfile is a subdirectory
specification. To copy an index file to a new file, use a special form of the copy
command:

COPY(file,'<index>|<newfile>')

Database Drivers 102

 This returns File Not Found if an invalid index is passed. The COPY command assumes
a default extension of .NDX for both the source and the target file names if none is
specified. If you require a file name without an extension, terminate the name with a
period. Given the file structure:

Clar2 FILE,CREATE,DRIVER('dBase4'),PRE(CL2)
NumKey KEY(+CL2:Num),DUP
StrKey KEY(+CL2:Str1)
StrKey2 KEY(+CL2:Str2)
AMemo MEMO(100), NAME('mem')
Record RECORD
Num STRING(@n-_9.2)
STR1 STRING(2)
STR2 STRING(2)
Mem STRING(10)

END
END

The following commands copy this file definition to A:
COPY(Clar2,'A:\CLAR2')
COPY(Clar2,'StrKey|A:\STRKEY')
COPY(Clar2,'StrKey2|A:\STRKEY2')
COPY(Clar2,'NumKey|A:\NUMKEY')

 After these calls, the following files would exist on drive A: CLAR2.DBF, CLAR2.DBT,
STRKEY.NDX, STRKEY2.NDX, and NUMKEY.NDX.

5 You do not need SHARE (or VSHARE) in any environment (for example, Novell) that
supplies file locking as part of the operating system.

6 The ADD statement tests for duplicate keys before modifying the data file or its
associated KEY files. Consequently it is slower than APPEND which performs no checks
and does not update KEYs. When adding large amounts of data to a database use
APPEND...BUILD in preference to ADD.

7 dBase IV performs record locking by locking the entire record within the data file. This
prevents read access to other processes. Therefore we recommend minimizing the
amount of time for which a record is held.

8 Although the driver supports these functions, we do not recommend their use. They must
physically access the files and add overhead. Instead, test the value returned by
ERRORCODE() after each sequential access. NEXT or PREVIOUS post Error 33
(Record Not Available) if an attempt is made to access a record beyond the end or
beginning of the file.

9 There is no distinction between file pointers and key pointers; they both return the record
number for any given record.

dbaseIV File Driver 103

10 POSITION(file) returns a STRING(12). POSITION(key) returns a STRING containing the
size of the key fields + 4 bytes.

11 Under dBase IV, the RECORDS() function reports the same number of records for the
data file and its keys and indexes. Usually there will be no difference in the number of
records unless the INDEX is out of date. Because the DELETE statement does not
physically remove records, the number of records reported by the RECORDS() function
includes inactive records. Exercise care when using this function.The field names must
appear as specified in the fields' NAME() attribute if supplied, or must be the label name.
A prefix may be used for compatibility with the Clarion conventions but is ignored.

12 THREADed files consume additional file handles for each thread that accesses the file.

Database Drivers 104

dBaseIV:Other

International Sort Sequence
✟ dBase IV sorts as if there were no diacritics in a field, thus A is sorted the same as Ä. If

two words are identical except for diacritic characters, then the words are sorted as
though the diacritic character was greater than the normal character. For example Äa <
Ab < Äb whereas a CLADIGRAPH of ÄAE will sort as Ab < Äa < Äb. Solution- if the same
file is used in Clarion and dBase IV, issue a BUILD statement rebuild the keys before
updating the file (reading the file causes no problems).

Boolean Evaluation
✟ dBase IV allows a logical field to accept one of 11 possible values (1,0,y,Y,n,N,t,T,f,F or a

space character). The space character is neither true nor false. When using a logical field
from a preexisting database in a logical expression, account for all these possibilities.
Remember that when a STRING field is used as an expression, it is true if it contains any
data and false if it is equal to zero or blank. Therefore, to evaluate a Logical field's truth,
the expression should be true if the field contains any of the "true" characters (T,t,Y, or y).
For example, if a Logical field were used to specify a product as taxable or nontaxable,
the expression to evaluate its truth would be:

 (If Condition):
Taxable='1' OR Taxable='T' OR Taxable='t' OR Taxable='Y' OR Taxable='y'

Large MEMOs
✟ Clarion supports MEMO fields up to a maximum of 64K. If you have an existing file which

includes a memo greater than 64K, you can use the file but not modify the large MEMOs.

✟ You can determine when your application encounters a large MEMO by detecting when
the memo pointer variable is non-blank, but the memo appears to be blank. Error 47 (Bad
Record Declaration) is posted, and any modification to the MEMO field is ignored.

Long Field Names
✟ dBase IV supports a maximum of 10 characters in a field name. If you require more, use

an External Name with 10 characters or less.

dbaseIV File Driver 105

Key Definition
✟ dBase IV supports the use of expressions to define keys. Within the Dictionary Editor,

you can place the expression in the external name field in the Key Properties dialog. The
general format of the external name is :

'FileName=T[Expression]'

 Where FileName represents the name of the index file (which can contain a path and file
extension), and T represents the type of the index. Valid types are: C = character, D =
date, and N = numeric. If the type is D or N then Expression can name only one field.

✟ Multiple-index (.MDX) files require the NAME() attribute on a KEY or INDEX to specify
the storage type of the key and any expression used to generate the key values. The
general format of the NAME() attribute on a KEY or INDEX is:

NAME('TagName|FileName[PageSize]=T[Expression],FOR[Expression]')

 The following documents the parameters for the NAME() attribute:

 TagName Specifies the name of an index tag within a multiple index file. If omitted
the driver creates a dBase IV style .NDX file using the name specified in
FileName.

 FileName Specifies the name of the index file, which may contain a path and
extension.

 PageSize Specifies that when creating a .MDX file, (if a TagName is specified), a
number in the range 2-32 specifying the number of 512-byte blocks in
each index page. This value is only used when creating the file. If you
specify multiple values with declarations for different tags in the same
.MDX file, the largest value will be selected. The default value is 2.

 T Specifies the type of index. Legal types are C = character, D = date, N =
numeric. If the type is D or N then Expression may name only one field.

 Expression Specifies an expression to generate the index. It may refer to multiple
fields and invoke multiple xBase functions. The functions currently
supported are listed below. Square brackets must enclose the
expression.

 Elements of the NAME() attribute may be omitted from the right. When specifying an
Expression, you must also specify the type and name. If the Expression is omitted, the
driver determines the Expression from the key fields when the file is created, or from the
index file when opened.

 If the type is omitted, the driver determines the index type from the first key component
when the file is created, or from the index file when opened.

Database Drivers 106

 If the NAME() attribute is omitted altogether, the index file name is determined from the
key label. The path defaults to the same location as the .DBF.

 Tag names are limited to 9 characters in length. If the supplied name is too long it is
automatically truncated.

 Specify all field names in the NAME() attribute without a prefix.

✟ dBase IV additionally supports the use of the Xbase FOR statement in expressions to
define keys. The expressions supported in the FOR condition must be a simple condition
of the form:

expression comparison_op expression

 comparison_op may be <, <=, =<, <>, =, =>, >= or >.

 The expression may refer to multiple fields in the record and contain xBase functions.
Square brackets must enclose the expression. The currently supported functions appear
below. If the driver encounters an unsupported Xbase function in a preexisting file, it
posts error 76 'Invalid Index String' when the file is opened for keys and static indexes.

 String expressions may use the '+' operator to concatenate multiple string arguments.
Numeric expressions use the '+' or '-' operators with their conventional meanings. The
maximum length of a dBase IV expression is 250 characters.

Supported xBase Key Definition Functions

ALLTRIM(string) Removes leading and trailing spaces.

CTOD(string) Converts a string key to a date. The string must be in the format
mm/dd/yy; the result takes the form 'yyyymmdd'. The yyyy element of the
date defaults to the twentieth century. An invalid date results in a key
containing blanks.

DELETED() Returns TRUE if the record is deleted.

DTOC(date) Converts a date key to string format 'mm/dd/yy.'

DTOS(date) Converts a date key to string format 'yyyymmdd.'

FIXED(float) Converts a float key to a numeric.

FLOAT(numeric) Converts a numeric key to a float.

IIF(bool,val1,val2) Returns val1 if the first parameter is TRUE, otherwise returns val2.

LEFT(string, n) Returns the leftmost n characters of the string key as a string of length n.

LOWER(string) Converts a string key to lower case.

LTRIM(string) Removes spaces from the left of a string.

dbaseIV File Driver 107

RECNO() Returns the current record number.

RIGHT(string, n) Returns the rightmost n characters of the string key as a string of length
n.

RTRIM(string) Removes spaces from the right of a string.

STR(numeric [,length[, decimal places]])

Converts a numeric to a string. The length of the string and the number
of decimal places are optional. The default string length is 10, and the
number of decimal places is 0.

SUBSTR(string,offset,n)

Returns a substring of the string key starting at offset and of n characters
in length.

TRIM(string) Removes spaces from the right of a string (identical to RTRIM).

UPPER(string) Converts a string key to upper case.

VAL(string) Converts a string key to a numeric.

Copies the UNNAMED (the only table in the file) table from CUSTOMER.TPS (which has no
password) to the CUSTOMER table in ORDERS.TPS which has the password acme96.

Database Drivers 108

DOS File Driver 109

DOS Database Driver
DOS:Specifications

The DOS file driver reads and writes any binary, byte-addressable files. Neither fields nor records
are delimited. When reading a record, the driver reads the number of bytes defined in the file's
RECORD structure, unless a length parameter is specified in the GET statement.

The DOS driver supports the length parameter for the ADD, APPEND, GET, and PUT
statements; this allows for variable length records in a DOS file.

The POINTER function returns the relative byte position within the file of the beginning of the last
record accessed by an ADD, APPEND, GET, or NEXT statement.

This file driver performs forward sequential processing only. No key or transaction processing
functions are supported, and the PREVIOUS statement is not supported.

Due to its limitations, the main function of this driver is as a disk editor for binary
files.

Files: C60DOSXL.LIB Windows Static Link Library

 C60DOSX.LIB Windows Export Library

 C60DOSX.DLL Windows Dynamic Link Library (32-bit)

DOS:Data Types
BYTE DECIMAL
SHORT PDECIMAL
USHORT STRING
LONG CSTRING
ULONG PSTRING
SREAL DATE
REAL TIME
BFLOAT4 GROUP
BFLOAT4

Database Drivers 110

DOS:File Specifications/Maximums
File Size: 4,294,967,295
Records per File : 4,294,967,295
Record Size: 64K
Field Size: 64K
Fields per Record: 64K
Keys/Indexes per File: n/a
Key Size: n/a
Memo fields per File: n/a
Memo Field Size : n/a
Open Data Files : Operating system dependent

DOS File Driver 111

DOS:Driver Strings
There are switches or "driver strings" you can set to control the way your application creates,
reads, and writes files with a specific driver. Driver strings are simply messages or parameters
that are sent to the file driver at run-time to control its behavior. See Common Driver Features--
Driver Strings for an overview of these runtime Database Driver switches and parameters.

Some driver strings have no effect after the file is open, so no SEND function
syntax is listed for those strings. However, the SEND function syntax to return the
value of the switch is listed for all driver strings.

The DOS Driver supports the following Driver Strings:

FILEBUFFERS

 DRIVER('DOS', '/FILEBUFFERS = n')

 [Buffers" =] SEND(file, 'FILEBUFFERS [= n]')

 Sets the size of the buffer used to read and write to the file, where the buffer size is (n * 512
bytes). Use the /FILEBUFFERS driver string to increase the buffer size if access is slow.
Maximum buffer size is 4,294,967,264. SEND returns the size of the buffer in bytes.

The default buffer size for files opened denying write access to other users is the
larger of 1024 or (2 * record size), and the larger of 512 or record size for all other
open modes.

Database Drivers 112

QUICKSCAN

 DRIVER('DOS', '/QUICKSCAN = on | off')

 [QScan" =] SEND(file, 'QUICKSCAN [= on | off]')

Specifies buffered access behavior. The ASCII driver reads a buffer at a time (not a record),
allowing faster access. In a multi-user environment these buffers are not 100% trustworthy for
subsequent access, because another user may change the file between accesses. As a
safeguard, the driver rereads the buffers before each record access. To disable the reread, set
QUICKSCAN to ON. The default is ON for files opened denying write access to other users, and
OFF for all other open modes. SEND returns the Quickscan setting (ON or OFF) in the form of a
STRING(3).

DOS:Supported Commands and Attributes

File Attributes Supported

 CREATE Y

 DRIVER(filetype [,driver string]) Y

 NAME Y

 ENCRYPT N

 OWNER(password) N

 RECLAIM N

 PRE(prefix) Y

 BINDABLE Y

 THREAD Y4

 EXTERNAL(member) Y

 DLL([flag]) Y

 OEM Y
File Structures Supported

 INDEX N

 KEY N

DOS File Driver 113

 MEMO N

 BLOB N

 RECORD Y
Index, Key, Memo Attributes Supported

 BINARY N

 DUP N

 NOCASE N

 OPT N

 PRIMARY N

 NAME N

 Ascending Components N

 Descending Components N

 Mixed Components N
Field Attributes Supported

 DIM Y

 OVER Y

 NAME Y
File Procedures Supported

 BOF(file) N

 BUFFER(file) N

 BUILD(file) N

 BUILD(key) N

 BUILD(index) N

 BUILD(index, components) N

 BUILD(index, components, filter) N

 BYTES(file) Y

 CLOSE(file) Y

Database Drivers 114

 COPY(file, new file) Y

 CREATE(file) Y

 DUPLICATE(file) N

 DUPLICATE(key) N

 EMPTY(file) Y

 EOF(file) Y

 FLUSH(file) N

 LOCK(file) Y

 NAME(label) Y

 OPEN(file, access mode) Y

 PACK(file) N

 POINTER(file) Y2

 POINTER(key) N

 POSITION(file) Y3

 POSITION(key) N

 RECORDS(file) Y

 RECORDS(key) N

 REMOVE(file) Y

 RENAME(file, new file) Y

 SEND(file, message) Y

 SHARE(file, access mode) Y

 STATUS(file) Y

 STREAM(file) N

 UNLOCK(file) Y

Record Access Supported

 ADD(file) Y

 ADD(file, length) Y

DOS File Driver 115

 APPEND(file) Y

 APPEND(file, length) Y

 DELETE(file) N

 GET(file,key) N

 GET(file, filepointer) Y

 GET(file, filepointer, length) Y

 GET(key, keypointer) N

 HOLD(file) N

 NEXT(file) Y

 NOMEMO(file) N

 PREVIOUS(file) Y

 PUT(file) Y

 PUT(file, filepointer) Y1

 PUT(file, filepointer, length) Y1

 RELEASE(file) N

 REGET(file,string) Y

 REGET(key,string) N

 RESET(file,string) Y

 RESET(key,string) N

 SET(file) Y

 SET(file, key) N

 SET(file, filepointer) Y

 SET(key) N

 SET(key, key) N

 SET(key, keypointer) N

 SET(key, key, filepointer) N

 SKIP(file, count) N

Database Drivers 116

 WATCH(file) N
Transaction Processing Supported

 LOGOUT(timeout, file, ..., file) N

 COMMIT N

 ROLLBACK N
Null Data Processing Supported

 NULL(field) N

 SETNULL(field) N

 SETNONNULL(field) N

Notes
1 When using PUT() with this driver you should take care to PUT back the same number of

characters that were read. If you PUT back more characters than were read, then the
"extra" characters will overwrite the first part of the subsequent record. If you PUT back
fewer characters than were read, then only the first part of the retrieved record is
overwritten, while the last part of the retrieved record remains as it was prior to the PUT().

2 POINTER() returns the relative byte position within the file.

3 POSITION(file) returns a STRING(4).

4 THREADed files consume additional file handles for each thread that accesses the file.

Foxpro / Foxbase File Driver 117

FoxPro / FoxBase Database Driver
FoxPro:Specifications

The FoxPro file driver is compatible with FoxPro and FoxBase. The default data file extension is *.DBF.

The default index file extension is *.IDX. The default Memo file extension is .FBT. FoxPro also
supports multiple index files, whose default extension is *.CDX. The miscellaneous section
describes the procedures for using the .CDX files.

Files: C60FOXXL.LIB Windows Static Link Library

 C60FOXX.LIB Windows Export Library

 C60FOXX.DLL Windows Dynamic Link Library

The FoxPro index file format is the backbone of its vaunted "Rushmore"
technology. The old saying "There's no free lunch," however, applies. Adding and
appending records to a large database is a slower process than in other xBase
formats, due to the time required to update the index file.

FoxPro:Data Types

The xBase file format stores all data as ASCII strings. You may either specify STRING types with
declared pictures for each field, or specify native Clarion types, which the driver converts
automatically.

FoxPro data type Clarion data type STRING w/ picture
Date DATE STRING(@D12)
*Numeric REAL STRING(@N-_p.d)
*Logical BYTE STRING(1)
Character STRING STRING
*Memo MEMO MEMO

Database Drivers 118

If your application reads and writes to existing files, a pictured STRING will suffice. However, if
your application creates a FoxPro or FoxBase file, you may require additional information for
these FoxPro and FoxBase types:

✟ To create a numeric field in the Data Dictionary, choose the REAL data type. In the
External Name field on the Attributes tab, specify
'NumericFieldName=N(Precision,DecimalPlaces)' where NumericFieldName is the name
of the field, Precision is the precision of the field and DecimalPlaces is the number of
decimal places. With a REAL data type, you cannot access the Character or Places fields
in the Field definition, you must specify those attributes with an expression in the External
Name Field on the Attributes tab.

 For example, if you want to create a field called Number with nine significant digits and
two decimal places, enter 'Number=N(9,2) in the External Name field on the Attributes
tab of the Field properties in the Data Dictionary.

 If you're hand coding a native Clarion data type, add the NAME attribute using the same
syntax.

 If you're hand coding a STRING with picture, STRING(@N-_9.2), NAME('Number'),
where Number is the field name.

✟ To create a logical field, using the data dictionary, choose the BYTE data type. There are
no special steps; however, see the miscellaneous section for tips on reading the data
from the field.

 If you're hand coding a STRING with picture, add the NAME attribute: STRING(1),
NAME('LogFld = L').

✟ To create a date field, using the data dictionary, choose the DATE data type, rather than
LONG, which you usually use for the TopSpeed or Clarion file formats.

✟ MEMO field declarations require the a pointer field in the file's record structure. Declare
the pointer field as a STRING(10) or a LONG. This field will be stored in the .DBF file
containing the offset of the memo in the .DBT file. The MEMO declaration must have a
NAME() attribute naming the pointer field. An example file declaration follows:

File FILE, DRIVER('FoxPro')
Memo1 MEMO(200),NAME('Notes')
Memo2 MEMO(200),NAME('Text')
Rec RECORD
Mem1Ptr LONG,NAME('Notes')
Mem2Ptr STRING(10),NAME('Text')

END
END

Foxpro / Foxbase File Driver 119

FoxPro:File Specifications/Maximums
File Size: 2,000,000,000 bytes
Records per File: 1,000,000,000 bytes
Record Size: 4,000 bytes
Field Size

Character: 254 bytes
Date: 8 bytes
Logical: 1 byte
Numeric: 20 bytes including decimal point
Float: 20 bytes including decimal point
Memo: 65,520 bytes (see note)

Fields per Record: 512
Keys/Indexes per File: No Limit
Key Sizes

Character: 100 bytes (.IDX)
254 bytes (.CDX)

Numeric, Date: 8 bytes
Memo fields per File:Dependent on available memory
Open Files: Operating system dependent

Database Drivers 120

FoxPro:Driver Strings
There are switches or "driver strings" you can set to control the way your application creates,
reads, and writes files with a specific driver. Driver strings are simply messages or parameters
that are sent to the file driver at run-time to control its behavior. See Common Driver Features--
Driver Strings for an overview of these runtime Database Driver switches and parameters.

Some driver strings have no effect after the file is open, so no SEND function
syntax is listed for those strings. However, the SEND function syntax to return the
value of the switch is listed for all driver strings.

The FoxPro Driver supports the following Driver Strings:

BUFFERS

 DRIVER('FOXPRO', '/BUFFERS = n')

 [Status" =] SEND(file, 'BUFFERS [= n]')

 Sets the size of the buffer used to read and write to the file, where the buffer size is (n * 512
bytes). Use the /BUFFERS driver string to increase the buffer size if access is slow. Maximum
buffer size is 4,294,967,264. SEND returns the size of the buffer in bytes.

The default is three buffers of 1024 bytes each. Increasing the number of buffers
will not increase performance when a file is shared by multiple users.

RECOVER

 DRIVER('FOXPRO', '/RECOVER')

 [Status" =] SEND(file, 'RECOVER')

Equivalent to the Xbase RECALL command, which recovers records marked for deletion. When
using the FoxPro driver, the DELETE statement flags a record as "inactive." The driver does not
remove the record until the PACK command is executed.

RECOVER is evaluated each time you open the file if you add the driver string to the data
dictionary. When the driver recovers the records previously marked for deletion, you must
manually rebuild keys and indexes with the BUILD statement.

Foxpro / Foxbase File Driver 121

IGNORESTATUS

 DRIVER('FOXPRO', '/IGNORESTATUS = on | off ')
 [Status" =] SEND(file, 'IGNORESTATUS [on | off]')

When set on, the driver does not skip deleted records when accessing the file with GET, NEXT,
and PREVIOUS in file order. It also enables a PUT on a deleted or held record. IGNORESTATUS
requires opening the file in exclusive mode. SEND returns the IGNORESTATUS setting (ON or
OFF) in the form of a STRING(3).

DELETED

 [Status" =] SEND(file, 'DELETED')

For use only with the SEND command, when IGNORESTATUS is on. Returns the status of the
current record. If deleted, the return string is "ON" and if not, "OFF."

ZEROY2K

DRIVER('FOXPRO', '/ZEROY2K = on | off')
[Status" =] SEND(file, 'ZEROY2K [on | off]')

In the header of FoxPro files there is a field that stores the year that the file was last edited. Some
applications store this as the number of years since 1900. Others store it as a 2 digit year. So for
dates in the year 2000 some applications store 0 in this field and others 100. Clarion will read files
with either. However it will write 100. Writing 100 may make the files unreadable by products that
only support 0. To change this behavior you can with use a driver string of ZEROY2K, a SEND
command or a setting in the WIN.INI file.

The driver will store 0 in the DBF file header when the WINI.INI setting is set to 1 or 'on' in a
SEND command or driver string, otherwise a 100 will be stored in the DBF file header.

Note: The SEND command causes the setting to be set for all files
that use that driver, not just for that file.

Example:
WIN.INI
;Sets all FoxPro files to store a 0 in the DBF file header
[CWFOXPRO]
ZEROY2K=1

!SEND command
SEND('Orders', ZEROY2K='on' !sets Orders file to store 0 in the DBF file header
SEND('Orders', ZEROY2K='off' !sets Orders file to store 100 in the DBF file header

!Driver String
Orders FILE, DRIVER('FOXPRO', '/ZEROY2K=on'),PRE(ORD) !SETS Orders file to store 0

Database Drivers 122

FoxPro:Supported Commands and Attributes

File Attributes Supported

 CREATE Y

 DRIVER(filetype [,driver string]) Y

 NAME Y

 ENCRYPT N

 OWNER(password) N

 RECLAIM N1

 PRE(prefix) Y

 BINDABLE Y

 THREAD Y13

 EXTERNAL(member) Y

 DLL([flag]) Y

 OEM N2
File Structures Supported

 INDEX Y

 KEY Y

 MEMO Y

 BLOB N

 RECORD Y
Index, Key, Memo Attributes Supported

 BINARY N14

 DUP Y3

 NOCASE Y

 OPT N

 PRIMARY Y

 NAME Y

Foxpro / Foxbase File Driver 123

 Ascending Components Y

 Descending Components Y

 Mixed Components N
Field Attributes Supported

 DIM N

 OVER Y

 NAME Y
File Procedures Supported

 BOF(file) Y9

 BUFFER(file) N

 BUILD(file) Y

 BUILD(key) Y

 BUILD(index) Y

 BUILD(index, components) Y4

 BUILD(index, components, filter) N

 BYTES(file) N

 CLOSE(file) Y

 COPY(file, new file) Y5

 CREATE(file) Y

 DUPLICATE(file) Y

 DUPLICATE(key) Y

 EMPTY(file) Y

 EOF(file) Y9

 FLUSH(file) Y

 LOCK(file) N

 NAME(label) Y

 OPEN(file, access mode) Y6

Database Drivers 124

 PACK(file) Y

 POINTER(file) Y10

 POINTER(key) Y10

 POSITION(file) Y11

 POSITION(key) Y11

 RECORDS(file) Y12

 RECORDS(key) Y12

 REMOVE(file) Y

 RENAME(file, new file) Y5

 SEND(file, message) Y

 SHARE(file, access mode) Y6

 STATUS(file) Y

 STREAM(file) Y

 UNLOCK(file) Y

Record Access Supported

 ADD(file) Y7

 ADD(file, length) N

 APPEND(file) Y7

 APPEND(file, length) N

 DELETE(file) Y1

 GET(file,key) Y

 GET(file, filepointer) Y

 GET(file, filepointer, length) N

 GET(key, keypointer) Y

 HOLD(file) Y8

 NEXT(file) Y

 NOMEMO(file) Y

Foxpro / Foxbase File Driver 125

 PREVIOUS(file) Y

 PUT(file) Y

 PUT(file, filepointer) Y

 PUT(file, filepointer, length) N

 RELEASE(file) Y

 REGET(file,string) Y

 REGET(key,string) Y

 RESET(file,string) Y

 RESET(key,string) Y

 SET(file) Y

 SET(file, key) Y

 SET(file, filepointer) Y

 SET(key) Y

 SET(key, key) Y

 SET(key, keypointer) Y

 SET(key, key, filepointer) Y

 SKIP(file, count) Y

 WATCH(file) Y
Transaction Processing Supported

 LOGOUT(timeout, file, ..., file) N

 COMMIT N

 ROLLBACK N
Null Data Processing Supported

 NULL(field) N

 SETNULL(field) N

 SETNONNULL(field) N

Database Drivers 126

Notes
1 When the driver deletes a record from a FoxPro database, the record is not physically

removed, instead the driver marks it inactive. Memo fields are not physically removed
from the memo file, however they cannot be retrieved if they refer to an inactive record.
Key values are removed from the index files. To remove records and memo fields
permanently, execute a PACK(file).

To those programmers familiar with FoxPro, this driver processes deleted records
consistent with the way FoxPro processes them after the SET DELETED ON
command is issued. Records marked for deletion are ignored from processing by
executable code statements, but remain in the data file.

2 If you need to access FoxPro data with alternate characters stored using a non-English
version of FoxPro, then you should use ODBC. However, if you do not have any string
based kesys, you can use the FoxPro driver and call the ConvertOEMToANSI and
ConvertANSIToOEM after retrieving and before updating a record.

3 In FoxPro it is legal to enter multiple records with duplicates of the unique key
components. However, only the first of these records is indexed. So processing in key
order only shows this first record. If you delete a record, then enter a new record with the
same key value, the key file continues to point at the deleted record rather than the new
record. In this situation, the FoxPro file driver changes the key file to point at the active
record rather than the deleted record. This means that if you use a FoxPro program to
delete a unique record, then insert a duplicate of this record, the new record is invisible
when processing in key order until a pack is done. If you do the same process in a
Clarion program, the new record is visible when processing in key order.

4 When building dynamic indexes, the components may take one of two forms:
BUILD(DynNdx, '+Pre:FLD1, -Pre:FLD2')

 This form specifies the names of the fields on which to build the index. The field names
must appear as specified in the fields' NAME() attribute if supplied, or must be the label
name. A prefix may be used for compatibility with Clarion conventions but is ignored.

BUILD(DynNdx, 'T[Expression]')

 This form specifies the type and Expression used to build an index--see Miscellaneous--
Key Definition for more information.

5 These commands copy data and memo files using newfile, which may specify a new file
name or directory. Key or index files are copied if the newfile is a subdirectory
specification. To copy an index file to a new file, use a special form of the copy
command:

COPY(file,'<index>|<newfile>')

Foxpro / Foxbase File Driver 127

 This returns File Not Found if an invalid index is passed. The COPY command assumes
a default extension of .IDX for both the source and the target file names if none is
specified. If you require a file name without an extension, terminate the name with a
period. Given the file structure:

Clar2 FILE,CREATE,DRIVER('FoxPro'),PRE(CL2)
NumKey KEY(+CL2:Num),DUP
StrKey KEY(+CL2:Str1)
StrKey2 KEY(+CL2:Str2)
AMemo MEMO(100), NAME('mem')
Record RECORD
Num STRING(@n-_9.2)
STR1 STRING(2)
STR2 STRING(2)
Mem STRING(10)

END
END

 The following commands copy this file definition to A:
COPY(Clar2,'A:\CLAR2')
COPY(Clar2,'StrKey|A:\STRKEY')
COPY(Clar2,'StrKey2|A:\STRKEY2')
COPY(Clar2,'NumKey|A:\NUMKEY')

 After these calls, the following files would exist on drive A: CLAR2.DBF, CLAR2.FPT,
STRKEY.IDX, STRKEY2.IDX, and NUMKEY.IDX.

6 You do not need SHARE (or VSHARE) in any environment (for example, Novell) that
supplies file locking as part of the operating system.

7 The ADD statement tests for duplicate keys before modifying the data file or its
associated KEY files. Consequently it is slower than APPEND which performs no checks
and does not update KEYs. When adding large amounts of data to a database use
APPEND...BUILD in preference to ADD.

8 FoxPro performs record locking by locking the entire record within the data file. This
prevents read access to other processes. Therefore we recommend minimizing the
amount of time for which a record is held.

9 Although the driver supports these functions, we do not recommend their use. They must
physically access the files and they are slow. Instead, test the value returned by
ERRORCODE() after each sequential access. NEXT or PREVIOUS post Error 33
(Record Not Available) if an attempt is made to access a record beyond the end or
beginning of the file.

10 There is no distinction between file pointers and key pointers; they both return the record
number for the given record.

Database Drivers 128

11 POSITION(file) returns a STRING(12). POSITION(key) returns a STRING the size of the
key fields + 4 bytes.

12 Under FoxPro, the RECORDS() function reports the same number of records for the data
file and its keys and indexes. Usually there will be no difference in the number of records
unless the INDEX is out of date. Because the DELETE statement does not physically
remove records, the number of records reported by the RECORDS() function includes
inactive records. Exercise care when using this function.The field names must appear as
specified in the fields' NAME() attribute if supplied, or must be the label name. A prefix
may be used for compatibility with the Clarion conventions but is ignored.

13 THREADed files consume additional file handles for each thread that accesses the file.

14 OEM conversion is not applied to BINARY MEMOs. The driver assumes BINARY
MEMOs are zero padded; otherwise, space padded.

Foxpro / Foxbase File Driver 129

FoxPro:Other

Boolean Evaluation
✟ FoxPro and FoxBase allow a logical field to accept one of 11 possible values

(0,1,y,Y,n,N,t,T,f,F or a space character). The space character is neither true nor false.
When using a logical field from a preexisting database in a logical expression, account for
all these possibilities. Remember that when a STRING field is used as an expression, it is
true if it contains any data and false if it is equal to zero or blank. Therefore, to evaluate a
Logical field's truth, the expression should be true if the field contains any of the "true"
characters (1,T,t,Y, or y). For example, if a Logical field were used to specify a product as
taxable or nontaxable, the expression to evaluate its truth would be:

 (If Condition):
Taxable='1' OR Taxable='T' OR Taxable='t' OR Taxable='Y' OR Taxable='y'

Large MEMOs
✟ Clarion supports MEMO fields up to a maximum of 64K. If you have an existing file which

includes a memo greater than 64K, you can use the file but not modify the large MEMOs.

✟ You can determine when your application encounters a large MEMO by detecting when
the memo pointer variable is non-blank, but the memo appears to be blank. Error 47 (Bad
Record Declaration) is posted, and any modification to the MEMO field is ignored.

Long Field Names
✟ FoxPro and FoxBase support a maximum of 10 characters in a field name. If you require

more, use an External Name with 10 characters or less.

Key Definition
✟ FoxPro and FoxBase support the use of expressions to define keys. Within the Dictionary

Editor, you can place the expression in the external name field in the Key Properties
dialog. The general format of the external name is :

'FileName=T[Expression]'

 Where FileName represents the name of the index file (which can contain a path and file
extension), and T represents the type of the index. Valid types are: C = character, D =
date, and N = numeric. If the type is D or N then Expression can name only one field.

Database Drivers 130

✟ Multiple-index (.CDX) files require the NAME() attribute on a KEY or INDEX to specify the
storage type of the key and any expression used to generate the key values. The general
format of the NAME() attribute on a KEY or INDEX is:

NAME('TagName|FileName=T[Expression],COMPRESSED')

 The following are the parameters for the NAME() attribute:

TagName Names an index tag within a multiple index file. If the TagName is
omitted the driver creates an .IDX file with the name specified in
FileName.

FileName Names the index file, and optionally contains a path and extension.

T Specifies the type of the index; legal types are C = character, D = date, N
= numeric. If the type is D or N then Expression may name only one field.

Expression Specifies the expression used to generate the index. The expression
may refer to multiple fields, and invoke multiple of xBase functions. The
functions currently supported are listed below. Square brackets must
enclose the expression.

COMPRESSED When specified, the FoxPro Driver creates a FoxPro 2 compatible
compressed .IDX file.

 Elements of the NAME() attribute may be omitted from the right. When specifying an
Expression, the type and name must also be specified. If the Expression is omitted, the
driver determines the Expression from the key fields when the file is created, or from the
index file when opened.

 If the type is omitted, the driver determines the index type from the first key component
when the file is created, or from the index file when opened.

 If the NAME() attribute is omitted altogether, the index file name is determined from the
key label. The path defaults to the same location as the .DBF.

 Tag names are limited to 10 characters in length; if the supplied name is too long it is
automatically truncated.

 All field names in the NAME() attribute must be specified without a prefix.

Foxpro / Foxbase File Driver 131

✟ FoxPro additionally supports the use of the Xbase FOR statement in expressions to
define keys. The expressions supported in the FOR condition must be a simple condition
of the form:

expression comparison_op expression

 comparison_op may be one of the following: <, <=, =<, <>, =, =>, >= or >.

 The expression may refer to multiple fields in the record, and contain xBase functions.
Square brackets must enclose the expression. The currently supported functions appear
below. If the driver encounters an unsupported Xbase function in a preexisting file, it
posts error 76 'Invalid Index String' when the file is opened for keys and static indexes.

 String expressions may use the '+' operator to concatenate multiple string arguments.
Numeric expressions use the '+' or '-' operators with their conventional meanings. The
maximum length of a FoxPro or FoxBase expression is 250 characters.

Supported xBase Key Definition Functions

ALLTRIM(string) Removes leading and trailing spaces.

CTOD(string) Converts a string key to a date. The string must be in the format
mm/dd/yy; the result takes the form 'yyyymmdd'. The yyyy element of the
date defaults to the twentieth century. An invalid date results in a key
containing blanks.

DELETED() Returns TRUE if the record is deleted.

DTOC(date) Converts a date key to string format 'mm/dd/yy.'

DTOS(date) Converts a date key to string format 'yyyymmdd.'

FIXED(float) Converts a float key to a numeric.

FLOAT(numeric) Converts a numeric key to a float.

IIF(bool,val1,val2) Returns val1 if the first parameter is TRUE, otherwise returns val2.

LEFT(string, n) Returns the leftmost n characters of the string key as a string of length n.

LOWER(string) Converts a string key to lower case.

LTRIM(string) Removes spaces from the left of a string.

RECNO() Returns the current record number.

RIGHT(string, n) Returns the rightmost n characters of the string key as a string of length
n.

RTRIM(string) Removes spaces from the right of a string.

Database Drivers 132

STR(numeric [,length[, decimal places]])

Converts a numeric to a string. The length of the string and the number
of decimal places are optional. The default string length is 10, and the
number of decimal places is 0.

SUBSTR(string,offset,n)

Returns a substring of the string key starting at offset and of n characters
in length.

TRIM(string) Removes spaces from the right of a string (identical to RTRIM).

UPPER(string) Converts a string key to upper case.

VAL(string) Converts a string key to a numeric.

Topspeed File Driver 133

TopSpeed Database Driver
TopSpeed:Overview

The TopSpeed Database file system is a high-performance, high-security, proprietary file driver
for Clarion development tools. It is not file compatible with the Clarion file driver's data.

Data tables, keys, indexes and memos can all be stored together in a single DOS file. The default
file extension is *.TPS. A separate "Transaction Control File" uses the *.TCF extension by default.

The TopSpeed driver can optionally store multiple tables in a single file. This lets you open as
many data tables, keys, and indexes as necessary using a single DOS file handle. This feature
may be especially useful when there are a large number of small tables, or when a group of
related files are normally accessed together. All keys, indexes, and memos are stored internally.

When multiple tables share a single DOS handle, the first OPEN mode applies to all
the tables within the file.

In addition, the TopSpeed file system supports the BLOB data type (Binary Large OBject), a field
which is completely variable-length and may be greater than 64K in size. A BLOB must be
declared before the RECORD structure. Memory for a BLOB is dynamically allocated and de-
allocated as necessary. For more information, see BLOB in the Language Reference.

Files: C60TPSXL.LIB Windows Static Link Library

 C60TPSX.LIB Windows Export Library

 C60TPSX.DLL Windows Dynamic Link Library

This driver offers speed, security, and takes up fewer resources on the end user's
system.

TopSpeed:Data Types
BYTE DECIMAL
SHORT STRING
USHORT CSTRING
LONG PSTRING
ULONG MEMO
SREAL GROUP
REAL BLOB
DATE TIME

Database Drivers 134

TopSpeed:File Maximums/Specifications
File Size : 2 GB
Records per File : Unsigned Long (4,294,967,295)
Record Size : 15,000 bytes
Field Size : 15,000 bytes
Fields per Record : 15,000
Keys/Indexes per File: 240
Key Size : 15,000 bytes
Memo fields per File: 255
Memo Field Size : 64,000 bytes
BLOB fields per File: 255
BLOB Size : Hardware dependent (Max size 640 MB)
Open Data Files : Operating system dependent
Table Name : 1,000 bytes
Tables per DOS File : Limited only by the maximum DOS

file size--approximately 2^32
bytes (4,294,967,296).

Concurrent Users per File: 1024

TopSpeed:Driver Strings

There are switches or "driver strings" you can set to control the way your application creates,
reads, and writes files with a specific driver. Driver strings are simply messages or parameters
that are sent to the file driver at run-time to control its behavior. See Common Driver Features--
Driver Strings for an overview of these runtime Database Driver switches and parameters.

Some driver strings have no effect after the file is open, so no SEND function
syntax is listed for those strings. However, the SEND function syntax to return the
value of the switch is listed for all driver strings.

The TopSpeed Driver supports the following Driver Strings:

DECIMALCheck

 [DECCheck" =] SEND(file, 'DECIMALCheck [= ON|OFF]')

DECIMALCheck=OFF ensures compatibility of TopSpeed files originally created in certain early
versions of Clarion with the current version by disabling error reporting for the number of decimal
places in DECIMAL fields during file header comparisons.

This switch should be used as a driver string, or, in a SEND command before the file is opened.

Topspeed File Driver 135

FLAGS

 [Flags" =] SEND(file, 'FLAGS [= bitmap]')

Sets and returns the configuration flags for the file. Use the following EQUATEs declared in
EQUATES.CLW to control the behavior of the target TopSpeed file:
!TopSpeed File Flags

TPSREADONLY EQUATE(1)

For example, the following code makes the file read-only for ODBC access while preserving any
other flags:
TpsFlags = SEND(MyFile, 'FLAGS')
SEND(MyFile, 'FLAGS ='&BOR(TpsFlags,TPSREADONLY)

FULLBUILD

 DRIVER('TOPSPEED', '/FULLBUILD = on | off')

 [State" =] SEND(file, 'FULLBUILD [= on | off]')

 [State" =] file{PROP:FULLBUILD} [= on | off]')

The TopSpeed driver has an optimized appending mechanism where you can add large numbers
of records to an existing table with the APPEND statement. Issuing a subsequent BUILD updates
only the appended key information, making incremental batch updates very fast. This is the
default behavior. Use the FULLBUILD driver string to modify this default behavior.

FULLBUILD=ON tells the next BUILD statement to fully rebuild the keys. FULLBUILD=OFF
restores the BUILD to its optimized state. Both versions of the SEND command return the current
build state as a string 'ON' or 'OFF'. Issue SEND(file,'FULLBUILD') to return the current build
state without changing it.

PNM=

 TName" = SEND(file, 'PNM=[starting point]')

Returns the next table name in the file's TopSpeed super file, after the specified starting point. If
there are no table names after the specified starting point, SEND returns an empty string. If
starting point is omitted or contains an empty string, SEND returns the first table name in the file.
PNM= is only valid with the SEND command. There are no spaces surrounding the equal sign
(=). The target file is the label of any of the tables within the TopSpeed super file.

For example, given a TopSpeed file containing the Supp table, the following code displays an
alphabetical listing of all the tables in the file:

Database Drivers 136

CODE
name = ''
LOOP
name = SEND(Supp,'PNM=' & name)
If name
MESSAGE(name)

ELSE
BREAK

END
END

TCF

 DRIVER('TOPSPEED', '/TCF = filename')

 [TCFPath =] SEND(file, 'TCF [= filename]')

Specifies a transaction control file other than the default \TOPSPEED.TCF. The file identifies all
transactions in progress until the program terminates or a SEND(file, 'TCF = filename') executes.
In other words, the TCF setting affects all TopSpeed files accessed by the program. This returns
the name of the transaction control file. For example, TCFPath = SEND(file, 'TCF').

We recommend using one transaction control file for a system. Using multiple files
with different access rights can result in partially committed transactions-- some of
the files within a transaction might be updated and others left unchanged.

See Transaction Control Files for more information on implementing this technique.

TopSpeed:Supported Commands and Attributes

File Attributes Supported

 CREATE Y

 DRIVER(filetype [,driver string]) Y

 NAME Y

 ENCRYPT Y

 OWNER(password) Y1

 RECLAIM N2

 PRE(prefix) Y

 BINDABLE Y

Topspeed File Driver 137

 THREAD Y12

 EXTERNAL(member) Y

 DLL([flag]) Y

 OEM Y
File Structures Supported

 INDEX Y

 KEY Y

 MEMO Y3

 BLOB Y15

 RECORD Y
Index, Key, Memo Attributes Supported

 BINARY Y13

 DUP Y

 NOCASE Y

 OPT Y

 PRIMARY Y

 NAME Y4

 Ascending Components Y

 Descending Components Y

 Mixed Components Y
Field Attributes Supported

 DIM Y

 OVER Y

 NAME Y
File Procedures Supported

 BOF(file) Y

 BUFFER(file) N

 BUILD(file) Y

Database Drivers 138

 BUILD(key) Y

 BUILD(index) Y

 BUILD(index, components) Y

 BUILD(index, components, filter) Y

 BYTES(file) Y

 CLOSE(file) Y

 COPY(file, new file) Y

 CREATE(file) Y

 DUPLICATE(file) Y

 DUPLICATE(key) Y

 EMPTY(file) Y

 EOF(file) Y

 FLUSH(file) Y

 LOCK(file) Y5

 NAME(label) Y

 OPEN(file, access mode) Y

 PACK(file) Y6

 POINTER(file) Y8

 POINTER(key) Y8

 POSITION(file) Y9

 POSITION(key) Y9

 RECORDS(file) Y

 RECORDS(key) Y

 REMOVE(file) Y

 RENAME(file, new file) Y

 SEND(file, message) Y

 SHARE(file, access mode) Y

Topspeed File Driver 139

 STATUS(file) Y

 STREAM(file) Y7

 UNLOCK(file) Y

Record Access Supported

 ADD(file) Y

 ADD(file, length) N

 APPEND(file) Y

 APPEND(file, length) N

 DELETE(file) Y2

 GET(file,key) Y

 GET(file, filepointer) Y8

 GET(file, filepointer, length) N

 GET(key, keypointer) Y

 HOLD(file) Y

 NEXT(file) Y

 NOMEMO(file) Y

 PREVIOUS(file) Y

 PUT(file) Y

 PUT(file, filepointer) Y

 PUT(file, filepointer, length) N

 RELEASE(file) Y

 REGET(file,string) Y

 REGET(key,string) Y

 RESET(file,string) Y

 RESET(key,string) Y

 SET(file) Y

 SET(file, key) Y

Database Drivers 140

 SET(file, filepointer) Y

 SET(key) Y

 SET(key, key) Y

 SET(key, keypointer) Y

 SET(key, key, filepointer) Y

 SKIP(file, count) Y

 WATCH(file) Y
Transaction Processing Supported (See Note 10)

 LOGOUT(timeout, file, ..., file) Y11

 COMMIT Y

 ROLLBACK Y
Null Data Processing Supported

 NULL(field) N

 SETNULL(field) N

 SETNONNULL(field) N

Notes
1 We recommend using a variable password that is lengthy and contains special

characters because this more effectively hides the password value from anyone looking
for it. For example, a password like "dd....#$...*&" is much more difficult to "find" than a
password like "SALARY."

To specify a variable instead of the actual password in the Owner Name field of the
File Properties dialog, type an exclamation point (!) followed by the variable name.
For example: !MyPassword.

2 The TopSpeed driver automatically reclaims space freed by deleted records and keys.

3 The TopSpeed file system uses the same compression algorithm for RECORDs and
MEMOs. For data of 255 bytes or less, MEMOs have no disk space advantage over
STRINGs. However, STRINGs are always allocated space (RAM) within the record
buffer, whereas MEMOs are only allocated space when the file is OPENed. MEMOs do
carry the advantage of BINARY versus NONBINARY, plus MEMOs may be omitted from
all processing with the NOMEMO statement.

Topspeed File Driver 141

4 The TopSpeed driver does not support external names for keys, because all keys are
stored internally.

5 LOCK() only affects other LOCK() calls. The only effect of a successful call to LOCK() is
that other processes will get an error FLALLK when they call LOCK().

6 PACK performs a BUILD and truncates the file to it's minimum size.

7 STREAM has the effect of LOCKing the file.

8 GET(file,filepointer) requires a pointer value returned from the POINTER() function.
POINTER() returns a physical record address (not a record number). Therefore you
cannot use

GET(file,1)

 to retrieve the first record in a TopSpeed file because 1 is not a valid pointer in a
TopSpeed file.

9 POSITION(file) returns a STRING(4). POSITION(key) returns a STRING the size of the
key fields + 4 bytes.

10 TopSpeed file logging is very fast (about 100 times faster than the Clarion driver). With
LOGOUT, the TopSpeed engine posts all transactions to memory. ROLLBACK simply
frees the memory, while COMMIT writes out the database changes in a stream.

 If a system crashes during a transaction (LOGOUT--COMMIT), the recovery is
automatically handled by the TopSpeed driver the next time the affected file is accessed.

11 LOGOUT has the effect of LOCKing the file. See also PROP:Logout in the Language
Reference.

12 THREADed files do not consume additional file handles for each thread that accesses
the file.

13 OEM conversion is not applied to BINARY MEMOs and BLOBs.

14 The TopSpeed driver accomplishes case insensitivity by converting strings to lowercase.
This can cause unexpected behavior for characters that fall between the upper and lower
case alphabet (that is, ^(94) and _(95) for both ANSI and ASCII sequences).

15 The driver can store BLOBs up to 640 MB. If you attempt to store a BLOB bigger than
this, an ERRORCODE 80 - Function not supported, is returned. This error is returned
after the BLOB handle assignment:
(e.g., blobname{PROP:Handle} = image{PROP:Handle}).

Database Drivers 142

TopSpeed:Other

File Sharing
✟ SHARE and open access modes:

 The following open access modes are supported Share required
34 (12h) Read/Write, deny write (default for OPEN) Yes
66 (42h) Read/Write, deny none (default for SHARE) Yes
64 (40h) Read Only, deny none Yes
18 (12h) Read/Write, deny all No
16 (10h) Read Only, deny all No
32 (20h) Read Only, deny write No

 For the modes indicated, SHARE.EXE (which implements DOS record locking) must be
loaded in AUTOEXEC.BAT or CONFIG.SYS. The following example loads SHARE in
AUTOEXEC.BAT, providing 500 maximum file locks, and the default 2048 bytes for the
storage area.

C:\DOS\SHARE.EXE /L:500

 If SHARE.EXE is required but is not loaded when the driver tries to obtain a lock, the
program generates a run-time message of "Failed to re-open in exclusive mode."

You do not need SHARE.EXE (or VSHARE) in any environment (for example,
Novell, Win95 or Win NT) that supplies file locking as part of the operating system.

 If the is no form of SHARE present (SHARE or VSHARE), then, for the first file access,
the driver opens the file in exclusive mode. Thereafter, subsequent attempts to open the
file will fail.

ERRORCODE 90

The TopSpeed driver posts an ERRORCODE of 90 for unexpected runtime errors. At the same
time, the driver posts a FILEERRORCODE (the former TPSBT error code) that helps us diagnose
the problem. This error handling gives you more control over runtime errors and provides us with
more information. That is, your program can trap for ERRORCODE=90 and react accordingly.

Should you receive an ERRORCODE of 90 from the TopSpeed driver, we want to know about it.
Please send us a copy of the file and the corresponding FILEERRORCODE value.

Topspeed File Driver 143

Large Keys (or small RAM)

APPEND() is recommended over ADD() if the total size of the keys exceeds the amount of RAM
available, if there is more than one key, or when adding a large number of records. The size of a
key (for this purpose) is the number of entries times (the sum of key fields + 10 bytes). If the
records being added are already in an approximate key order, then you can discount that key for
the purposes of the above calculation.

As an example, if a file has two 40 byte keys and 2 Megabytes of RAM are available, then ADD()
becomes (relatively) slow when the database size exceeds about 2,000,000 / (40 + 10 + 40 + 10)
= 20,000 records.

Incremental Key/Index Build

The TopSpeed driver implements incremental building; this means that building a key only reads
records starting from the first record appended since the key was last built. The driver merges the
new keys with the existing key. Thus building a large key where only a few recently added
records have been modified should be fast. See the FULLBUILD driver string above.

Building an index is similar, but must start at the minimum physical record whose position in the
index has changed since the index was last built.

Dynamic indexes are not retained, so cannot be built incrementally.

Batch Processing Performance

When writing a large number of records, use STREAM() or open the file in a deny write mode,
that is, OPEN(file) rather than SHARE(file). After the records have been written, call FLUSH() to
allow other users access.

It is very important to use STREAM() when ADDing/APPENDing/PUTting a large number of
records. STREAM() will typically make processing about 20 times faster. For example, adding
1000 records might take nearly 2 minutes without STREAM(), but only 5 seconds with STREAM.

It is not necessary to use STREAM() or FLUSH() on a logged out file (performance on logged out
files is always good).

STREAM has the effect of LOCKing the file.

Database Drivers 144

POINTERs and Deleted Records

POINTER(key) returns the relative position of the record within the file. Consequently when that
record is DELETEd, the pointer becomes invalid. Any subsequent access using the pointer fails.
If you require fuzzy matching whereby the nearest record is returned, use the POSITION()
function.

Data Compression--STRINGs vs MEMOs

The TopSpeed driver compresses the entire record buffer area (not individual fields within the
record), therefore, compression gains can be realized by placing similar fields adjacent to each
other in the FILE declaration.

The TopSpeed file system uses the same compression algorithm for STRINGs and MEMOs;
however, the compression occurs at a "higher level" for MEMOs than for STRINGs. As a result,
MEMOs do have a disk space advantage over large STRINGs (over 500 bytes) and smaller
STRINGS can have a slight performance advantage over MEMOs. The larger the STRING, the
greater the advantage.

MEMOs do carry the advantage of BINARY versus NONBINARY, plus MEMOs may be omitted
from all processing with the NOMEMO statement.

STRINGs are always allocated space (RAM) within the record buffer, whereas MEMOs are only
allocated space when the file is OPENed. Also MEMOs cannot be key components.

Estimating File Size

The TopSpeed file driver compresses data and key information, so the ultimate file size depends
on the "compressibility" of the data and keys. In the worst case (data and keys cannot be
compressed because there is no repeating information) the file size may be estimated as:
(RecordSize + All Key components) * Records + Fixed Overhead

In a more realistic case (data and keys are compressible), the file size may be estimated as:
((size of all string fields)/(compressibility factor) + size of all binary
fields + size of all binary key components + (4 * number of string key
components)) * Records + Fixed Overhead

Topspeed File Driver 145

Note that Fixed Overhead varies depending on your file definition. Fixed overhead includes about
800 bytes for the driver, plus the header information describing the fields and keys for the file.
The more fields and keys, and the longer the names, the higher the fixed overhead. A rough rule
of thumb for calculating fixed overhead is 800 bytes + 40 bytes for each field and key. For
Example:

 File Description Estimated Fixed Overhead

 1 field, no keys 1KB
20 fields, 10 keys 2KB
200 fields, 10 keys 9KB

Concurrent User Limit

The TopSpeed driver limits concurrent users to 1024 per file; additional users would have to wait
momentarily until a slot opens up. Practically speaking the driver is very unlikely to reach this limit
since very few networks and servers will support this many concurrent users. Generally, we
recommend a client/server file system for more than 30 concurrent users.

Transaction Processing--the TCF File

Speedy Logging and Automatic Recovery

TopSpeed transaction logging is very fast (about 100 times faster than the Clarion driver). With
LOGOUT, the TopSpeed engine posts all transactions to memory. ROLLBACK simply frees the
memory, while COMMIT writes out the database changes in a stream.

If a system crashes during a transaction (LOGOUT--COMMIT), the recovery is automatically
handled by the TopSpeed driver the next time the affected file is accessed.

The Transaction Control File

The transaction control file (.TCF) is used to ensure that changes to more than one DOS file,
which are grouped into a transaction, either all happen or none happen. By default the transaction
control file has the name "\TOPSPEED.TCF." The TCF driver string lets you change this. See
TCF for more information.

When any workstation finds a file which is in a partially committed state, and which was involved
in a multi-file transaction, it needs to access the TCF file to decide what to do. The TCF file
provides "atomicity"--a single (boolean) storage location which inndicates if a multi-file transaction
committed or not.

Note that the .TCF file contains very little information; it just serves to coordinate multi-file
commits. The actual rollback/commit data is stored in the data (.TPS) files.

Database Drivers 146

How TopSpeed Transaction Logging Works

LOGOUT gives each transaction a unique id which it stores in the .TCF file. LOGOUT also stores
the .TCF file name and transaction id in each data (.TPS) file which is updated, so that after a
crash, the next time the file is opened the TopSpeed driver can find the .TCF file and do any
necessary recovery. COMMIT removes the unique transaction id from the .TCF file.

To be effective, the .TCF file must be accessible when any files controlled by it are accessed.
Therefore, you generally should not delete or move .TCF files. If a transaction updates network
files, you should specify a transaction control file on the network.

It is not necessary to use the same TCF file for all transactions; however, we strongly recommend
it. The consequence of there being several TCF files with various levels of accessibility (or of a
deleted or overwritten TCF file) is that some of the files within a transaction might be updated and
others left unchanged.

Storing Multiple Tables in a single .TPS File

By using the characters '\!' in the NAME() attribute of a TopSpeed file declaration, you can specify
that a single .TPS file will hold more than one table. For example, to declare a single .TPS file
's&p.tps' that contains 3 tables called supp, part and ship:

Supp FILE,DRIVER('TopSpeed'),PRE(Supp),CREATE,NAME('S&P\!Supp')
...

Part FILE,DRIVER('TopSpeed'),PRE(Part),CREATE,NAME('S&P\!Part')
...

Ship FILE,DRIVER('TopSpeed'),PRE(Ship),CREATE,NAME('S&P\!Ship')
...

The tables share a single DOS file handle, opened when the first table is opened, and closed
when the last table is closed. The first open mode determines the open mode for all the other
tables in the file. If the first open mode is read-only, then all the tables are read-only and no
updates are allowed.

Similarly, if one of the tables in the file is logged out, then all the tables are effectively logged out.
If one table in the file is flushed, then all the tables are flushed.

This feature is especially useful when there are a large number of small tables, or when the
application must normally access several related tables at once.

You can retrive the names of tables within the .TPS files with the SEND() command. To retrieve
the first name, issue:

SEND(file,'PNM=')

This returns the name of the first table. To retrieve the second name, issue:
SEND(file,'PNM=FirstTableName')

Topspeed File Driver 147

This returns the name of the second table, and so on.

You can also rename the tables; for example, given the above declarations the following
command renames the table called Supp to Old_Supp:

RENAME(Supp,'S&P\!Old_Supp')

If you use the OWNER attribute on multiple tables in a single .TPS file, all the tables must have
the same OWNER attribute.

If you don't specify a table name, the table is called 'unnamed', so that the following are all
equivalent:
foo FILE,DRIVER('TopSpeed')
foo FILE,DRIVER('TopSpeed'),NAME('foo')
foo FILE,DRIVER('TopSpeed'),NAME('foo\!unnamed')

Collating Sequences

Changing Collating Sequence

Changing the collation sequence on a Clarion 2.003 or earlier TopSpeed file (by changing .ENV
file or OEM flag) corrupts the file.

This is no longer true, because the collating seqence for the file is now stored within the file. This
change is fully backward compatible. Old files continue to work as before and new files are
accessible by older programs.

To add the collating sequence information to an existing file, simply do a full build on the file:
SEND(file,'FULLBUILD=on')
BUILD(file)

The collating sequence for a TopSpeed file is established when the table is created or a full build
is performed. Therefore the OEM flag is only significant at the creation of the file or on a full build.

Any application that uses an incorrect sequence (due to an incompatible .ENV file) to access a
file may get unpredictable results, but will not corrupt the data.

Accessing TopSpeed files with Access Jet and ODBC

Occasionally, the Access Jet engine returns "#deleted" for each requested field. This is a known
bug in Microsoft Access. The default query used by Access does an internal comparison of the
record set to determine if a record has been deleted or modified from the database. The
mechanism is known to work poorly for certain data types, notably DECIMAL.

Microsoft recommends using an SQL pass-through query as a work around to this problem. To
create a SQL pass-through query:

Database Drivers 148

1. Choose SQL Specific, Pass Through from the Query menu in query design mode. For
Access 7, Select Query, and press the New button.

2. Accept the default of Design View.

3. Close the Show Table Window.

4. Select SQL Specific from the Query menu and select the Pass-Through option.

5. Enter the SQL statement.

The Query can be saved for future use. This method will correct virtually all display problems, but
the resulting grid is not updatable. Updates must be performed using an Update Query when SQL
Passthrough is used.

Topspeed File Driver 149

TopSpeed Database Recovery Utility
The TopSpeed file system is designed to automatically repair most errors. However, if a
TopSpeed file is physically damaged during a system malfunction, the TopSpeed Database
Recovery Utility can recover the undamaged portions of your data.

The TopSpeed Database Recovery Utility is an emergency repair tool and should
not be used on a regular basis. Use it only when a file has been damaged.

The TopSpeed Database Recovery Utility reads the damaged file and writes the recovered
records to a new file. It uses the information stored in the file's header and scans the file
recovering undamaged portions.

Optionally, you can provide an example file containing the header information in the event the
original header information is damaged. An example file is any file with a FILE declaration
identical to the damaged file. You can create an example file by issuing a CREATE(file)
command, then saving the resulting empty file to a new name.

The TopSpeed Database Recovery Utility is a distributable utility designed to help your end users
recover damaged files.

The Clarion license agreement applies to TPSFIX.EXE. You may distribute to your
users, but they may not redistribute it.

The recovery utility is designed to work either interactively or noninteractively with command line
parameters. Interactively, you provide the parameters through two wizard dialogs. You can run
TPSFIX noninteractively by supplying the command line parameters with the Clarion RUN()
statement, Windows API calls, Windows 95 shortcuts, or Program Manager Icons.

ERRORCODE 90 and Corrupted Files

The TopSpeed driver posts an ERRORCODE of 90 for unexpected runtime errors. When an
ERRORCODE of 90 occurs, the driver also posts a FILEERRORCODE (the former TPSBT error
code) that helps us diagnose the problem.

An ERRORCODE of 90 usually indicates your TopSpeed file is corrupted. In most cases the
corruption is a result of hardware failure. For example, one customer with a 50 machine network
traced a near daily file corruption to bad network cards on 2 of the 50 machines. After replacing
the bad cards, the corruptions disappeared.

Database Drivers 150

However, should you receive an ERRORCODE of 90 from the TopSpeed driver, we want to know
about it. Before you repair the file, please make a copy of the damaged file and send it to us
along with the corresponding FILEERRORCODE value. We analyze all the corrupted files we
receive for recognizable patterns that can help us improve the driver.

Topspeed File Driver 151

TPSFIX Command Line Parameters
The TPSFIX utility can accept command line parameters which lets you execute it from an
application, from a Program Manager Icon, or from a Windows 95 Shortcut.

Here is the syntax for running TPSFIX with command line parameters.

TPSFIX sourcepath[?password] [destpath[?password]] [/E:examplepath[?password]]
 [/L:localepath] [/H] [/K] [/P] [/O] [/T:filename]

TPSFIX The executable (TPSFIX.EXE).

sourcepath The file name and path of the source (damaged) database file.

?password The file's password.

destpath The file name and path of the recovered database file. If omitted, the destpath is
the same as the sourcepath and an example file is required.

/A If specified, the user is not offered a backup prompt. The prompt suppressed,
however a backup of the file is made.

/E:examplepath The file name and path of the example database file. This parameter is required
for any fix-in-place operation (that is, when sourcepath = destpath).

/H- If specified, the utility uses the header information in the source file.

/K If specified, the utility rebuilds all keys for the database.

/L:localepath The file name and path of the Locale (.ENV) file used to specify an alternate
collating sequence.

/N If specified, the file will be checked for errors. No errors will be corrected.

/O If specified, the file uses OEMTOANSI and ANSITOOEM to determine the
collating sequence. See Internationalization in the Language Reference.

/P If specified, the user is prompted for each parameter even if they are supplied on
the command line.

/T:filename If there are file errors, a log file with the supplied filename will be created.

Using the Recovery Utility Non-Interactively

There are some issues to consider before running the TPSFIX utility. Because of the following,
we do not recommend running TPSFIX from your application program. Rather, it is better to
instruct your end users to close down the application program completely before running the
TPSFIX utility.

 The database file should NOT be open when running TPSFIX. Ensure the file
is closed before starting TPSFIX.

Database Drivers 152

 To prevent access during the recovery process is completed, TPSFIX
LOCKs the file automatically.

 It is more efficient and safer to have your application rebuild the KEYs (omit
the /K parameter). It is also a good way to check the status of a recovery.

Automatic Fix-in-Place Recovery

By omitting the destpath parameter and supplying an example file, you can directly overwrite the
damaged file. This is a fix-in-place recovery. The TPSFIX utility does create an intermediate file,
but you don't have to worry about it. For Example:

TPSFIX.EXE Datafile.TPS /E:Example.TPE /H

or with Embedded Source Code:
RUN('TPSFIX.EXE Datafile.TPS /E:Example.TPE /H')

This recovers the "datafile.TPS" file using the "Example.TPE" file as an example for the table and
key layouts, does not rebuild the keys, and uses the header information in the original file.
TPSFIX automatically saves the original file to a backup with a file extension of TP1 through TP9.
Each time the utility is executed, the numeric portion of the extension is incremented.

Separate Source and Target Recovery

This method requires two lines of embedded source code but gives you control over the renaming
process. You insert the source code in the Accepted Embed point for the Menu Item or button.
For example:

COPY(datafilelabel, 'Datafile.OLD') ! copies the original file
! to Datafile.OLD

RUN(TPSFIX Datafile.OLD Datafile.tps /H) ! Runs the utility
using the

! renamed file as
! the source and the original
! name as the target

This copies the datafilelabel file to DATAFILE.OLD, recovers the file and writes it to
DATAFILE.TPS using the header information in the original file.

SQL Accelerators 153

All SQL Accelerators (Drivers)
General Information for all SQL Drivers
These SQL Accelerator Drivers share a common code base and many common features such as
the unique, high speed buffering technology (see BUFFER in the Language Reference), common
driver strings, and SQL logging capability. However, their primary purpose is to translate Clarion
file commands into appropriate, efficient SQL statements specific to their respective SQL servers,
and to handle any result sets returned by those servers.

The SQL Accelerator Drivers convert standard Clarion file I/O statements and function calls into
optimized SQL statements, which they send to their backend SQL servers for processing. This
means you can use the same Clarion code to access both SQL tables and other file systems
such as TopSpeed files. It also means you can use Clarion template generated code with your
SQL databases.

In addition to the automatically generated SQL statements, the SQL Accelerator Drivers forward
any additional SQL statements you specify to the backend SQL servers. The SQL Accelerator
Driver interprets the result set returned from the SQL server and makes it available to your
application program with the Clarion NEXT or PREVIOUS statement.

All the common behavior of all the SQL Accelerator drivers is documented in this chapter. Driver-
specific behavior is documented the chapter for that specific SQL driver.

SQL Accelerator Unique Keys

The SQL Accelerator drivers should generally be used only on tables with unique keys. The
drivers will function on files without unique keys, but only with substantially limited capabilities.
Without a unique key, the RESET and REGET commands return errors, and the driver cannot
update the SQL database.

Most Clarion templates also require that you define a primary key for each table in order to
generate code.

Database Drivers 154

Using SQL Tables in your Clarion Application

Register the SQL Accelerator Driver

Before your application can use a particular database driver, the driver must be registered with
the Clarion development environment. The in-the-box drivers are already registered when you
install Clarion. You must register any add-on drivers. See Clarion's Development Environment--
Database Driver Registry in the User's Guide for information on registering database drivers.

Import the Table Definitions

Typically, you add SQL support to your application by importing the SQL table, view, and
synonym definitions into your Clarion Data Dictionary. See The Dictionary Editor--Importing File
Definitions in the User's Guide for general information on importing table, file, and view
definitions. This section describes SQL Driver imports generally. Driver-specific import
information is described in the chapter or manual for each driver.

Although you can manually add table definitions to the dictionary (or even hand code your FILE
declarations) for your SQL tables, we strongly recommend importing the table definitions.
Importing the table definitions reduces the chance of introducing errors into the dictionary and
guarantees the correct specification of data types, key structures, etc.

The importing approach assumes your SQL tables are already defined within the SQL database.
In the case where you are designing a new SQL database, you may, of course, lay out the table
definitions for the first time in the Clarion Data Dictionary. However, we recommend this approach
only for prototyping and for databases with minimum complexity and maintenance requirements.
In most cases, to correctly implement an SQL database requires defining more items than are
stored in the Clarion Data Dictionary--for example, stored procedures, triggers, access rights, and
storage allocation.

Once your table definitions are in the Clarion Data Dictionary, you develop your SQL based
applications just as you would any other application.

Driver-specific import information is described in the chapter or manual for each
driver.

SQL Accelerators 155

SQL Import Wizard--Login Dialog

When you select an SQL Accelerator Driver from the driver drop-down list, the Import Wizard
opens the Login/Connection dialog. The Login/Connection dialog collects the connection
information for the SQL database.

Before you can connect to the SQL database and import table definitions, the
database must be started and must be accessible from your computer.

Fill in the fields in the Login/Connection dialog.

Next >
Press this button to open the Import Wizard's Import List dialog.

SQL Import Wizard--Import List Dialog

When you press the Next > button, the Import Wizard opens the Import List dialog. The Import
List dialog lists the importable items.

Highlight the table, view, or synonym whose definition to import, then press the Finish button to
import. The Import Wizard adds the definition to your Clarion Data Dictionary, then opens the File
Properties dialog to let you modify the default definition.

Import additional tables, views, and synonyms by repeating these steps. After all the items are
imported, return to the Dictionary Editor where you can define relationships and delete any
columns not used in your Clarion application. See Advanced Techniques--Define Only the Fields
You Use.

Connection Information and Driver Configuration--File Properties

Typically, you add SQL support to your application by importing the SQL or ODBC table, view,
and synonym definitions into your Clarion Data Dictionary. The Import Wizard automatically fills in
the File Properties dialog with default values based on the imported item. However, there are
several fields in the File Properties dialog you can use to further configure the way the SQL
Accelerator Driver accesses the data. These File Properties fields are described below.

Driver Options

Typically, the Import Wizard places nothing in the Driver Options field. However, you can add
driver strings to this field to control how the driver accesses your SQL data. For example, you can
generate a log of driver activity or specify how the driver handles dates with a value of zero (0).
See SQL Driver Strings for more information.

Database Drivers 156

Owner Name

Typically, the Import Wizard places the SQL database connection information (Host, Username,
Password, etc.) in the Owner Name field.

For security and portability reasons, you may want to specify this connection information with
variables rather than hard coded strings in your dictionary. To use a variable specification, type
the variable name, preceded by an exclamation point in the Owner Name field; for example
!LoginString. Then use whatever method you choose to prime the variable before accessing the
SQL table.

Some SQL Accelerator drivers allow additional information in the Owner Name field. This
information is described in the documentation for each driver.

SQL Accelerators 157

SQL Driver Behavior

Automatic Login Dialog

The SQL Accelerator drivers automatically look for UserName and Password values whenever
they access an SQL table. If a UserName and Password have already been supplied, the driver
uses those values. If no values have been supplied, the driver prompts for the UserName and
Password with the automatic login dialog.

We recommend opening a table at the start of your program so the time devoted to logging in
occurs at program start up. Clarion's Application Wizard automatically generates code to do this
for SQL Accelerator drivers. However, if you do not use the Application Wizard, you can
accomplish the same effect simply by adding an SQL table to the File Schematic for your main
procedure. This automatically generates code to open the table.

Except for the ODBC Accelerator Driver, the automatic Login dialog lets the user specify
Username, Password and Database.

In the Database drop-down list, select from previously selected hosts. If the Database list is
empty, you may type in the database name.

SET/NEXT and SET/PREVIOUS Processing (SELECT/ORDER BY)

A SET statement followed by a NEXT in a LOOP structure is the most common Clarion method to
process records sequentially. When the SQL Accelerator drivers encounter a SET/NEXT
combination, they generate an SQL SELECT statement with an ORDER BY clause based on the
KEY component fields. The KEY component fields are determined by the KEY names in the SET
statement. For example, the SQL driver translates this Clarion code

Ord FILE,PRE(Ord),DRIVER('SQLDriver'),NAME('ord')
NameDate KEY(+Ord:Name,+Ord:Date),NAME('DateKey')
Record RECORD
Name STRING(12),NAME('NameId')
Date DATE,NAME('OrderDate')
Type STRING(1),NAME('OrderType')
Details STRING(20),NAME('OrderDetails')

END
END

CODE
Ord:Name = 'SMITH'
SET(Ord:NameDate,Ord:NameDate)
LOOP
NEXT(Ord)
!... some processing

END

Database Drivers 158

into a SELECT statement similar to:
SELECT NameId,OrderDate,OrderType,OrderDetails FROM Ord
WHERE (NameID >= 'SMITH')
ORDER BY NameID, OrderDate

The SET(file) statement (to process in file order, not keyed order) only supports the
NEXT statement. Any attempt to execute a PREVIOUS statement when processing
in file order causes ERRORCODE 80 (Function Not Supported).

NULL Fields

When you read a row with NULL values from an SQL table, the Clarion record buffer contains an
empty string for string fields, or a 0 for numeric fields, and NULL(field) returns TRUE for the field.
If the field's contents are later changed to a non-empty or non-zero value then NULL(field) returns
FALSE.

If you want to change a NULL field to non-null, but still blank or zero, then you must call
SETNONULL(field) to reset the null flag.

If you wish to clear a field to NULL that was previously non-null then call SETNULL(field) or
SETNULL(record). SETNULL() clears the contents of the field or record and resets the null flag.

When adding a new record to a file, by default all blank fields are added as blank or zero fields,
not as NULL. If you want to force a field to be added with a NULL value, then you must call
SETNULL(field) or SETNULL(record) to null all the fields.

SQL Accelerators 159

Performance Considerations
Generally, Clarion's development environment (Data Dictionary Import Wizard, Database Drivers,
and templates) produces optimized, high performance, SQL applications.

This section describes some of the issues involved in producing these optimized applications.
You should be aware of these issues so you can maintain a high level of performanceas you take
more control of the development process.

Define Only the Fields You Use

With the SQL Accelerator drivers you only need to define the fields that you actually use in the
Clarion Data Dictionary. This reduces both the overhead within your Clarion application and
network traffic.

For example, if your SQL table contains 200 columns but only three are needed for a particular
program, retrieving only those three fields dramatically reduces the amount of data sent over the
network. If each column contains 20 bytes, then three columns would require only 60 bytes to be
transferred whereas all 200 columns requires a 4,000 byte transfer.

After you have imported the table definition into your Clarion Data Dictionary, use the Dictionary
Editor's Columns / Key Definition dialog to delete the fields/columns you don't use.

Matching Clarion Keys to SQL Constraints and Indexes

Generally, the Clarion KEY definition need not exactlly match an index in the SQL database. The
Clarion KEY simply serves to supply the appropriate ORDER BY clause for driver generated
SELECT statements.

However, if the Clarion KEY does not match an SQL key or index, then the SQL server must build
a temporary logical view every time you access the table using the unmatched KEY. This can be
very slow for large files.

The best way to guarantee the Clarion KEYs have a matching SQL constraint or index, is to
import the table, view, or synonym definition into the Clarion Data Dictionary. See Import the
Table Definitions.

Filter (Contracting) Locators

Using Filter Locators on your BrowseBox controls rather than Incremental or Step Locators can
reduce the volume of data sent between client and server. See BrowseBox Control Template for
more information on Filter Locators.

Database Drivers 160

Approximate Record Count

By default, the Clarion templates generate code to count the total number of records to be
processed for a report. This total record count allows for an accurate progress bar display during
report generation. However, for large tables, the resulting SELECT COUNT(*) can be very slow.

Therefore, for large reports, we recommend providing an approximate record count to suppress
the SELECT COUNT(*) as follows:

1. In the Application Tree dialog, RIGHT-CLICK the (Report) procedure, then choose
Properties from the popup menu.

 This opens the Procedure Properties dialog.

2. Press the Report Properties button to open the Report Properties dialog.

3. In the Approx. Record Count field, type an approximate record count for the report,
such as 5000.

4. Press the OK button to close the Report Properties dialog.

5. Press the OK button again to return to the Application Tree dialog.

6. Press the button to save your work.

Fixed Thumbs and Movable Thumbs
By default, Clarion's code generation Wizards use Fixed Thumbs when Browsing SQL tables
because Movable Thumbs can cause major performance slow downs on large tables in Clarion /
SQL applications. For this reason, we recommend that you specify Fixed Thumbs for your
manually place BrowseBox controls as follows:

1. In the Application Tree dialog, RIGHT-CLICK the Browse procedure, then choose
Extensions from the popup menu.

 This opens the Extension and Control Templates dialog.

2. In the list box, select Browse on ..., then press the Scroll Bar Behavior button.

 This opens the Scroll Bar Behavior dialog.

3. In the Scroll Bar Type drop-down list, select Fixed Thumb, then press the OK button.

4. Press the OK button again to return to the Application Tree dialog.

5. Press the Save button to save your work.

SQL Accelerators 161

Date and Time Column Considerations
A common practice in some SQL databases (MSSQL, Oracle, and others) is to define a
composite DateTime column (i.e., one column representing two pieces of data). In order for
Clarion to separate the date and time information for processing, an import of this DateTime
column type into the Dictionary Editor results in the following type of data structure:

Orderdate STRING(8) !original column name from SQL
Orderdate_GROUP GROUP, OVER(Orderdate) !structure created by Clarion
Orderdate_DATE DATE !use this column to reference date info
Orderdate_TIME TIME !use this column to ref time info

END

No matter what type of SQL/ADO/ODBC driver you are using, Clarion will detect and convert
these composite DateTime columns for you automatically.

Know your back end! For example, the SMALLDATETIME and DATETIME data types of MS-
SQL are treated equally, with both only being able to store the minimum of either the precision of
the Clarion TIME field or the backend data type. So, in the case of the SMALLDATETIME data
type, the seconds and hundredths of a second are discarded, using the SMALLDATETIME rule
that > 29.99 is rounded up to the next minute.

Another note; If you don't need the time portion, you can just use a "Date" type field (as long as
no one else is writing to the “Time” portion from another application). Otherwise, you
will need to be aware that the time portion is not zero when filtering, sorting, etc.

Database Drivers 162

SQL Batch Transaction Processing
Most SQL databases operate in auto-commit mode. This means that any operation that updates
a table (ADD, PUT, or DELETE) executes an implicit COMMIT. This can be very slow for a series
(batch) of updates.

To optimize batch processes, surround any batch processing in a transaction frame (that is, with
LOGOUT and COMMIT). The LOGOUT command prevents any subsequent implicit COMMITs
until the transaction frame ends with either a COMMIT or a ROLLBACK. For example:
LOGOUT(.1,OrderDetail) !Begin Transaction
DO ErrHandler !always check for errors

LOOP X# = 1 TO RECORDS(DetailQue) !Process stored detail records
GET(DetailQue,X#) !Get one from the QUEUE
DO ErrHandler !check for errors

Det:Record = DetailQue !Assign to record buffer
ADD(OrderDetail) !and add it to the file
DO ErrHandler !check for errors

END
COMMIT !Terminate good transaction

ErrHandler ROUTINE !Error routine
IF NOT ERRORCODE() THEN EXIT. !Bail out if no error
ROLLBACK !Rollback the bad transaction
MESSAGE('Transaction Error - ' & ERROR())!Log the error
RETURN !and get out

You may want to issue intermittent calls to COMMIT and LOGOUT to save data at regular
intervals. See the Language Reference for more information.

SQL Accelerators 163

Using Embedded SQL
You can use Clarion's property syntax (PROP:SQL) to send SQL statements to the backend SQL
server, within the normal execution of your program. For backward compatibility, you can also
use the SEND function to send SQL statements; however, we recommend using the property
syntax.

Note: When you issue a SELECT statement using PROP:SQL, the selected fields must match
the fields declared in the named file or view. In addition, if you use VIEW{Prop:SQL} to issue a
SELECT statement, the fields in the SELECT must be ordered based on the field order in
the file definition, not the PROJECT sequence.

PROP:SQL
You can use Clarion's property syntax (PROP:SQL) to send SQL statements to the backend SQL
server, within the normal execution of your program. You can send any SQL statements
supported by the SQL server.

This capability lets your program do backend operations independent of the SQL Accelerator
driver's generated SQL. For example, multi-record updates can often be accomplished more
efficiently with a single SQL statement than with a template generated Process procedure which
updates one record at a time. In cases like these it makes sense for you to take control and send
custom SQL statements to the backend, and PROP:SQL lets you do this.

If you issue an SQL statement that returns a result set (such as an SQL SELECT statement), you
use NEXT(file) to retrieve the result set one row at a time, into the file's record buffer. The
FILEERRORCODE() and FILEERROR() functions return any error code and error message set
by the back-end SQL server.

You may also query the contents of PROP:SQL to get the last SQL statement issued by the file
driver.

Examples:
SQLFile{PROP:SQL}='SELECT field1,field2 FROM table1' |

& 'WHERE field1 > (SELECT max(field1)' |
& 'FROM table2' !Returns a result set you

! get one row at a time
! using NEXT(SQLFile)

SQLFile{PROP:SQL}='CALL GetRowsBetween(2,8)' !Call stored procedure

SQLFile{PROP:SQL}='CREATE INDEX ON table1(field1 DESC)' !No result set

SQLFile{PROP:SQL}='GRANT SELECT ON mytable TO fred' !DBA tasks

SQLString=SQLFile{PROP:SQL} !Get last SQL statement

Database Drivers 164

SEND and PROP:SQL

You can use the Clarion SEND procedure to send an SQL command to the backend database.
This is provided for backward compatibility with early versions of Clarion. We recommend using
the property syntax to send SQL statements to the backend database.

Examples:
SEND(SQLFile,'SELECT field1,field2 FROM table1' |

& 'WHERE field1 > (SELECT max(field1)' |
& 'FROM table2') !Returns a result set you

! get one row at a time
! using NEXT(SQLFile)

SEND(SQLFile,'CALL GetRowsBetween(2,8)') !Call stored procedure

SEND(SQLFile,'CREATE INDEX ON table1(field1 DESC)') !No result set

Using Embedded SQL for Batch Updates

SQL does a good job of handling batch processing procedures such as: printing reports,
displaying a screen full of table rows, or updating a group of table rows.

The SQL Accelerator drivers take full advantage of this when browsing a table or printing.
However, they do not always use it to its best advantage with the Process template or in code
which loops through a table to update multiple records. Therefore, when doing batch updates to a
table, it can be much more efficient to execute an embedded SQL statement than to rely on the
code generated by the Process template.

For example, to use PROP:SQL to increase all Salesman salaries by 10% you could:
SQLFile FILE,DRIVER('Oracle'),NAME(SalaryFile)
Record RECORD
SalaryAmount PDECIMAL(5,2),NAME('JOB')

. .
CODE
SqlFile{PROP:SQL} = 'UPDATE SalaryFile SET '&|

'SALARY=SALARY * 1.1 WHERE JOB=''S'''

The names used in the SQL statement are the SQL table names, not the Clarion field names.

SQL Accelerators 165

PROP:SQLFilter

You can use PROP:SQLFilter to filter your VIEWs using native SQL code rather than Clarion
code.

When you use PROP:SQLFilter, the SQL filter is passed directly to the server. As such it cannot
contain the name of variables or functions that the server is not aware of; that is the filter
expression must be valid SQL syntax with valid SQL column names. For example:
View{PROP:SQLFilter} = 'Date = TO_DATE(''01-MAY-1996'',''DD-MON-YYYY'')'

or
View{PROP:SQLFilter} = 'StrField LIKE ''AD%'''

Combining VIEW Filters and SQL Filters

When you use PROP:SQLFilter, the SQL filter may replace any filter specified for the VIEW, or it
may be in addition to a filter specified for the VIEW. Prefix the SQL filter with a plus sign (+) to
append the SQL filter to the VIEW filter specified. For example:
View{PROP:SQLFilter} = '+ StrField LIKE ''AD%'''

When you append the SQL filter by using the plus sign, the logical end result of the filtering
process is (View Filter) AND (SQL Filter).

Omit the plus sign (+) to replace the Clarion filter with the SQL filter. When you replace the
Clarion filter with the SQL filter by omitting the plus sign, the logical end result of the filtering
process is simply (SQL Filter).

Database Drivers 166

Calling a Stored Procedure

To call a stored procedure the following SQL syntax is used to build the SQL calling
statements.

 [output_bound_field =] call_type [([parameter[,parameter]…])]

call_type CALL
NORESULTCALL

parameter constant
bound_field

constant This must conform to the syntax of your backend. Normally numerics and strings
are the same as Clarion. For ODBC systems, date constants are in the format
{d 'yyyy-mm-dd'}, time constants are {t 'hh:mm:ss'} and time stamp constants are
{ts 'yyy-mm-dd hh:mm:ss'}.

bound_field output_bound_field
output_bound_field '['bind_type']'

output_bound_field
&variable

bind_type IN
OUT
INOUT
BINARY (valid on all SQL drivers, except Oracle)

variable This must be a variable that you have previously bound using the BIND function.

CALL

To call a stored procedure you use property syntax to issue the SQL syntax 'CALL
storedprocedure.'

Example:
MyFile{PROP:SQL} = 'CALL SelectRecordsProcedure (&MyVar[INOUT])'

SQL Accelerators 167

NORESULTCALL

The SQL Accelerator drivers also allow the syntax 'NORESULTCALL storedprocedure' for stored
procedures that do not return a result set.

Example:
MyFile{PROP:SQL} = 'NORESULTCALL SelectRecordsProcedure (&MyVar[INOUT])'

Return Values

The Accelerator drivers support return codes, output parameters, and in/out parameters for
stored procedures. These are defined using IN, OUT, and INOUT. IN declares a variable as input,
OUT declares a variable as output, and INOUT declares a variable as both input and output. You
can also have your stored procedures return a result set.

The BINARY switch is used to signal the driver to pass the data in the bound field as binary data
rather than character data. See the example below.

Example:
MyFile FILE,DRIVER('ODBC')
Record RECORD
ErrorCode LONG
ErrorMsg STRING(100)

END
END

CODE
OPEN(MyFile)
MyFile{PROP:SQL} = 'CALL ProcWithResultSet'
NEXT(MyFile)
IF ~ERRORCODE()
IF MyFile.ErrorCode THEN STOP(MyFileErrorMsg).

END

Note: The above example shows how to return a result set. The result set must match the
fields declared in the named file or view. The storedprocedure ProcWithResultSet
includes a final select statement that results with the set of requested data.

Database Drivers 168

Example:
PROGRAM
MAP
CallProc(STRING)

END

MyFile FILE,DRIVER('MSSQL')
Record RECORD
c LONG

END
END

Ret LONG
Out STRING(10)

CODE

BIND('RetCode', Ret)
BIND('Out', Out)
CallProc('&RetCode = CALL StoredProcTest(''1'',&Out)')
MESSAGE(Return value of StoredProcTest =' & Ret)
MESSAGE(Output parameter of StoredProcTest =' & Out)

CallProc PROCEDURE(Str)
CODE

MyFile{PROP:SQL} = Str

The above example shows how to return an output parameter.

Example:
PROGRAM

MAP
END

PRAGMA('link(C%V%MSS%X%%L%.LIB)')

SQLFile FILE,DRIVER('MSSQL'),NAME('SYSFILES')
REC RECORD
ID LONG
NAME CSTRING(100)

END
END

SQL Accelerators 169

TS STRING(8)
CODE

OPEN(SQLFile)
SQLFile{PROP:SQL} = 'DROP PROCEDURE tstest'
SQLFile{PROP:SQL} = 'CREATE PROCEDURE tstest @ts as timestamp AS '& |

' return'
BIND('TS',TS)
TS='<0><0><0><0><0><0><5H><0DDH>'
SQLFile{PROP:SQL}='NORESULTCALL TSTEST(&TS[IN][BINARY])'

The above example shows how to use the IN and BINARY switches.

For a more specific example tailored to MSSQL, refer to the MSSQL Accelerator topic.

Runtime SQL Properties for Views using SQL Drivers
The SQL View Engine allows you to specify SQL that will be substituted for a column in a
SELECT statement using the following syntax:

view{'field_label',PROP:Name} = SQLString

where SQLString is any SQL valid within a SELECT statement.

Example:
PROGRAM
MAP
END

EMP FILE,DRIVER('ORACLE'),NAME('EMP'),PRE(EMP)
P_EKY_EMP KEY(EMP:EMPNO),NOCASE,OPT,PRIMARY
KEY_DEP KEY(EMP:DEPTNO),DUP,NOCASE,OPT
Record RECORD
EMPNO SHORT !Emp-no
ENAME CSTRING(11) !Employee name
JOB CSTRING(10) !Job
HIREDATE DATE !Hiredate
MGR SHORT !Manager
SAL PDECIMAL(7,2) !Salary
COMM PDECIMAL(7,2) !Commisison
DEPTNO BYTE

END
END

MyView VIEW(EMP)
PROJECT(EMP:EmpNo)

END

Database Drivers 170

CODE
OPEN(EMP)
OPEN(MyView)
MyView{'EMP:EmpNo',PROP:NAME} = 'count(*)'
SET(MyView)
NEXT(MyView)

This example will produce the equivalent of "SELECT count(*) FROM EMP".

SQL Accelerators 171

VIEW support for aggregate functions
The SQL view engine supports PROP:GroupBy and PROP:Having. These properties
allow you to add respectively GROUP BY and HAVING SQL clauses to your SELECT
statement.

PROP:GroupBy must be set first to allow PROP:Having to be generated.

Example:

PROGRAM

MAP
END

EMP FILE,DRIVER('ORACLE'),NAME('EMP'),PRE(EMP)
P_EKY_EMP KEY(EMP:EMPNO),NOCASE,OPT,PRIMARY
KEY_DEP KEY(EMP:DEPTNO),DUP,NOCASE,OPT
Record RECORD
EMPNO SHORT !Emp-no
ENAME CSTRING(11) !Employee name
JOB CSTRING(10) !Job
HIREDATE DATE !Hiredate
MGR SHORT !Manager
SAL PDECIMAL(7,2) !Salary
COMM PDECIMAL(7,2) !Commisison
DEPTNO BYTE

END
END

MyView VIEW(EMP)
PROJECT(EMP:Mgr)
PROJECT(EMP:Sal)
END

CODE
OPEN(EMP)
OPEN(MyView)
MyView{'EMP:Sal',PROP:Name} = 'sum(sal)'
MyView{PROP:GroupBy} = 'Mgr'
MyView{PROP:Having} = 'sum(sal) > 100000'

SET(MyView)
NEXT(MyView)

Database Drivers 172

The previous example code is the equivalent to "SELECT mgr, sum(sal) FROM EMP GROUP
BY mgr HAVING sum(sal) > 100000"

In other words, this code will return a list of all Manager IDs and the total salary of their
subordinates if their subordinates make a total of more than 100000.

SQL Accelerators 173

Debugging Your SQL Application
All of the SQL Accelerator drivers can create a log file documenting Clarion I/O statements they
process, the corresponding SQL statements, and the SQL return codes.

You can generate system-wide logs and on-demand logs (conditional logging based on your
program logic).

System-wide Logging

A new utility/example application has been added--Trace.EXE. You can run this from the Clarion
Start Menu option. A compiled version is installed in the .\BIN directory and the source .APP is
installed in the \Examples\Resource\Trace directory. This utility allows you to easily set tracing
options for each file driver and for the VIEW engine.

These setting are stored in WIN.INI.

For system-wide logging, you can add the following to your WIN.INI file:
[CWdriver]
Profile=[1|0]
Details=[1|0]
Trace=[1|0]
TraceFile=[Pathname]

where driver is the database driver name (for example [CWTopSpeed]). Neither the INI section
name [CWdriver] nor the INI entry names are case sensitive.

Profile=1 tells the driver to include the Clarion I/O statements in the log file; Profile=0 tells the
driver to omit Clarion I/O statements. The Profile switch must be turned on for the Details switch
to have any effect.

Details=1 tells the driver to include record buffer contents in the log file; however, if the file is
encrypted, you must turn on both the Details switch and the ALLOWDETAILS switch to log record
buffer contents (see ALLOWDETAILS). Details=0 tells the driver to omit record buffer contents.
The Profile switch must be turned on for the Details switch to have any effect.

Trace=1 tells the driver to include all calls to the back-end file system, including the generated
SQL statements and their return codes, in the log file. Trace=0 omits these calls. The Trace
switch generally generates log information that helps to debug the SQL drivers, but is normally
not particularly useful to the developer.

Database Drivers 174

TraceFile names the log file to write to. If TraceFile is omitted the driver writes the log to driver.log
in the current directory. Pathname is the full pathname or the filename of the log file to write. If no
path is specified, the driver writes the specified file to the current directory.

Logging opens the named logfile for exclusive access. If the file exists, the new log data is
appended to the file.

On Demand Logging

For on-demand logging you can use property syntax within your program to conditionally turn
various levels of logging on and off. The logging is effective for the target table and any view for
which the target table is the primary table.
file{PROP:Profile}=Pathname !Turns Clarion I/O logging on
file{PROP:Profile}='' !Turns Clarion I/O logging off
PathName = file{PROP:Profile} !Queries the name of the log file
file{PROP:Log}=string !Writes the string to the log file
file{PROP:Details}=1 !Turns Record Buffer logging on
fFile{PROP:Details}=0 !Turns Record Buffer logging off

where Pathname is the full pathname or the filename of the log file to create. If you do not specify
a path, the driver writes the log file to the current directory.

You can also accomplish on demand logging with a SEND() command and the LOGFILE driver
string. See LOGFILE for more information.

Language Level Error Checking

You can use the FILEERROR() and FILEERRORCODE() functions to capture messages and
codes returned from the backend server to the SQL Accelerator driver. See the Language
Reference for more information on these functions.

SQL Accelerators 175

SQL Accelerator Drivers:Supported Commands and Attributes

File Attributes Supported

 CREATE Y

 DRIVER(filetype [,driver string]) Y

 NAME Y

 ENCRYPT N

 OWNER(password) Y1

 RECLAIM N

 PRE(prefix) Y

 BINDABLE Y

 THREAD Y

 EXTERNAL(member) Y

 DLL([flag]) Y

 OEM N
File Structures Supported

 INDEX Y

 KEY Y

 MEMO N

 BLOB Y

 RECORD Y
Index, Key, Memo Attributes Supported

 BINARY N3

 DUP Y

 NOCASE Y

 OPT N

Database Drivers 176

 PRIMARY Y

 NAME Y

 Ascending Components Y

 Descending Components Y

 Mixed Components Y
Field Attributes Supported

 DIM N

 OVER Y

 NAME Y
File Procedures Supported

 BOF(file) N

 BUFFER(file) Y

 BUILD(file) Y

 BUILD(key) Y

 BUILD(index) Y3

 BUILD(index, components) Y3

 BUILD(index, components, filter) N

 BYTES(file) Y

 CLOSE(file) Y

 COPY(file, new file) N

 CREATE(file) Y

 DUPLICATE(file) Y

 DUPLICATE(key) Y

 EMPTY(file) Y

 EOF(file) N

 FLUSH(file) N

 LOCK(file) N

SQL Accelerators 177

 NAME(label) Y

 OPEN(file, access mode) Y

 PACK(file) N

 POINTER(file) N

 POINTER(key) N

 POSITION(file) N

 POSITION(key) Y

 RECORDS(file) Y

 RECORDS(key) Y

 REMOVE(file) Y

 RENAME(file, new file) N

 SEND(file, message) Y

 SHARE(file, access mode) Y

 STATUS(file) Y

 STREAM(file) N

 UNLOCK(file) N

Record Access Supported

 ADD(file) Y

 ADD(file, length) N

 APPEND(file) Y

 APPEND(file, length) N

 DELETE(file) Y

 GET(file,key) Y

 GET(file, filepointer) N

 GET(file, filepointer, length) N

 GET(key, keypointer) N

 HOLD(file) N

Database Drivers 178

 NEXT(file) Y

 NOMEMO(file) N

 PREVIOUS(file) Y

 PUT(file) Y

 PUT(file, filepointer) N

 PUT(file, filepointer, length) N

 RELEASE(file) N

 REGET(file,string) N

 REGET(key,string) Y

 RESET(file,string) N

 RESET(key,string) Y

 SET(file) Y

 SET(file, key) N

 SET(file, filepointer) N

 SET(key) Y

 SET(key, key) Y

 SET(key, keypointer) N

 SET(key, key, filepointer) N

 SKIP(file, count) Y

 WATCH(file) Y
Transaction Processing Supported (see Note 2)

 LOGOUT(timeout, file, ..., file) Y4

 COMMIT Y

 ROLLBACK Y
Null Data Processing Supported

 NULL(field) Y

 SETNULL(field) Y

SQL Accelerators 179

 SETNONNULL(field) Y

Notes
1 We recommend using a variable password that is lengthy and contains special

characters because this more effectively hides the password value from anyone looking
for it. For example, a password like "dd....#$...*&" is much more difficult to "find" than a
password like "SALARY."

To specify a variable instead of the actual password in the Owner Name field of the
File Properties dialog, type an exclamation point (!) followed by the variable name.
For example: !MyPassword.

2 See also PROP:Logout in the Language Reference.

3 BUILD(index) sets internal driver flags to guarantee the driver generates the correct
ORDER BY clause. The driver does not call the backend server.

4 Whether LOGOUT also LOCKs the table depends on the server's configuration for
transaction processing. See your server documentation.

Database Drivers 180

CHECKFORNULL
The CHECKFORNULL field switch applies to all SQL drivers

Usage:

In the External name attribute:

‘field name | CHECKFORNULL’

When browsing through a table, it is sometimes necessary for the driver to request all rows
that are at, or before, the current row. It does this by generating a WHERE clause. For
example:
WHERE (field1 <= value) AND (field1 < value OR field2 <= value2)

The above example is for a two component key. For more components, the WHERE clause
gets longer, and this will work well in most cases. However, in SQL, if a field has a NULL
value, then field < value is false, field = value is false, and field > value is also false. So, if you
are sorting on field components that contain NULL values, you need to set the external field
name of the field to

‘field name | CHECKFORNULL’

This will force the driver to generate:

WHERE((field1<=value OR field1 IS NULL))AND((field1<value OR field1 IS NULL)OR field2<=value2)

So, in this example, the WHERE clause will also return rows that contain NULL values,
instead of rejecting them.

SQL Accelerators 181

SQL Driver Strings(Generic)

SQL Driver Strings
There are switches or "driver strings" you can set to control the way your application creates,
reads, and writes files with a specific driver. Driver strings are simply messages or parameters
that are sent to the file driver at run-time to control its behavior. See Common Driver Features--
Driver Strings for an overview of these runtime Database Driver switches and parameters.

A forward slash precedes all SQL driver strings. The slash allows the driver to
distinguish between driver strings and SQL statements sent with the SEND
function.

The SQL Accelerator Drivers support the following Driver Strings:

ALLOWDETAILS
APPENDBUFFER
BINDCOLORDER
BINDCONSTANTS
CLIPSTRINGS
FASTCOLUMNFETCH
FORCEUPPERCASE
GATHERATOPEN
GETINFO
IGNORETRUNCATION
ISOLATIONLEVEL
JOINTYPE
LOGFILE
NESTING
ODBCCALL
ORDERINSELECT
USEINNERJOIN
VERIFYVIASELECT
WHERE
ZERODATE
ZEROISNULL

Database Drivers 182

ALLOWDETAILS

DRIVER('SQLDriver', '/ALLOWDETAILS = TRUE | FALSE')

The ALLOWDETAILS driver string allows the SQL Accelerator driver to include record buffer
contents in the log file for encrypted files.

The ALLOWDETAILS driver string works with the Details switch described in the Debugging Your
SQL Application section.

APPENDBUFFER

 DRIVER('SQLDriver', '/APPENDBUFFER = size ')

 [Buffer" =] SEND(file, 'APPENDBUFFER [= size]')

By default, APPEND adds records to the file one at a time. To get better performance over a
network you can tell the driver to build up a buffer of records then send all of them to Btrieve at
once. Size is the number of records you want to allocate for the buffer. SEND returns the number
of records that will fit in the buffer.

BINDCOLORDER
DRIVER('SQLDriver', '/BINDCOLORDER = [0 | 1 | 2]')

Valid for all drivers except Oracle

When executing a SELECT statement the driver has to do the following:

1. Compile the SELECT statement
2. Bind memory locations for the columns to be returned
3. Bind memory locations for the WHERE clause
4. Executes the SELECT statement
5. Fetch the data

The order that these are executed is not completely fixed. The compile (Step 1) must be done
first and the fetch (Step 5) last. However, the other three steps can be executed in any order.

If BINDCOLORDER is set to 0, the order is 1, 2, 3, 4, 5.
If BINDCOLORDER is set to 1, the order is 1, 3, 2, 4, 5.
If BINDCOLORDER is set to 2, the order is 1, 3, 4, 2, 5.

The default is 0 for all supported driver except MySQL, which has a default setting of 2.

SQL Accelerators 183

BINDCONSTANTS
 DRIVER('SQLDriver', '/BINDCONSTANTS = TRUE | FALSE ')

 [Bind" =] SEND(file, '/BINDCONSTANTS [= TRUE | FALSE]')

(NOTE: Not valid for ORACLE Accelerator)
By default (BINDCONSTANTS=TRUE) the SQL Accelerator binds memory locations instead of
generating text equivalents for constant values. However, some back ends get confused when
doing this. So if you find that your SQL based BrowseBox will not scroll, or your backend returns
incorrect results for a BrowseBox you can turn off binding of constant values by setting
BINDCONTANTS to FALSE.

CLIPSTRINGS
 DRIVER('SQLDriver', '/CLIPSTRINGS = TRUE | FALSE ')

 [Clipped" =] SEND(file, '/CLIPSTRINGS [= TRUE | FALSE]')

(NOTE: Not valid for ORACLE Accelerator)
By default (CLIPSTRINGS=TRUE), the SQL driver CLIPs strings before sending them to the
backend server (see CLIP in the Language Reference). To send the full (unclipped) string, set
CLIPSTRINGS=FALSE.

FASTCOLUMNFETCH
 DRIVER('SQLDriver', '/FASTCOLUMNFETCH = TRUE | FALSE ')

 [Fetch" =] SEND(file, '/FASTCOLUMNFETCH [= TRUE | FALSE]')

(NOTE: Not valid for ORACLE Accelerator)
By default, the SQL driver will attempt to use the extended fetch abilities of a back end to retrieve
column information. Some back ends support extended fetch, but not when fetching column
information. To stop these back ends from crashing or returning invalid errors when opening a
file, you can set /FASTCOLUMNFETCH=FALSE .

Database Drivers 184

FORCEUPPERCASE

 DRIVER('SQLDriver', '/FORCEUPPERCASE = TRUE | FALSE ')

 [Uppered" =] SEND(file, '/FORCEUPPERCASE [= TRUE | FALSE]')

(NOTE: Not valid for ORACLE Accelerator)
By default (FORCEUPPERCASE=FALSE), the SQL Driver passes the table name in mixed case
to the SQLColumns function to verify the existence of the table. However, some backends require
the table name to be passed in uppercase. To pass the table name in uppercase, set
FORCEUPPERCASE=TRUE. See also VERIFYVIASELECT.

GATHERATOPEN
 DRIVER('SQLDriver', '/GATHERATOPEN = TRUE | FALSE ')

(NOTE: Not valid for ORACLE Accelerator)
By default the driver delays gathering field information until it is required. However, some
backends (like Sybase 11) perform poorly under these conditions. Setting GATHERATOPEN to
TRUE forces the driver to gather most of the field information when the file is opened, whihc
avoids a slowdown during program execution.

GETINFO
 Result = filelabel{PROP:GETINFO, property}

(NOTE: Not valid for ORACLE Accelerator)
Use this property to retrieve information about a connection to any ODBC data source. The full
list of available ODBC properties can be found in ODBCATTR.INC

IGNORETRUNCATION
DRIVER('SQLDriver', '/IGNORETRUNCATION = TRUE | FALSE ')

 filelabel{PROP:IGNORETRUNCATION} = TRUE | FALSE

(NOTE: Not valid for ORACLE Accelerator)

You can declare your string data to be a different size in Clarion than on the server. For example,
you can define a CHAR(10000) as CSTRING(50) if all you are interested in is the first 50
characters of the data. However, doing this will generate an ODBC warning about string
truncation.

By default, Clarion treats this as a normal error. If you want to ignore this warning, you can set
\IGNORETRUNCATION=TRUE, or alternatively, use filelabel{PROP:IgnoreTruncation} = 1.

SQL Accelerators 185

ISOLATIONLEVEL

 DRIVER('SQLDriver', '/ISOLATIONLEVEL = number')
 number = SEND(file,'/ISOLATIONLEVEL = number')
 file{PROP:IsolationLevel} = number
 number = file{PROP:IsolationLevel}

(NOTE: Not valid for ORACLE Accelerator)
The following terms are used to define transaction isolation levels:

Dirty Read Transaction 1 changes a row. Transaction 2 reads the changed row
before transaction 1 commits the change. If transaction 1 rolls back the
change, transaction 2 will have read a row that is considered to have
never existed.

Nonrepeatable Read Transaction 1 reads a row. Transaction 2 updates or deletes that row
and commits this change. If transaction 1 attempts to reread the row, it
will receive different row values or discover that the row has been
deleted.

Phantom Transaction 1 reads a set of rows that satisfy some search criteria.
Transaction 2 inserts a row that matches the search criteria. If
transaction 1 reexecutes the statement that read the rows, it receives a
different set of rows.

 number must be one of the following values:

 1 Dirty reads, non-repeatable reads, and phantoms are possible.

 2 Dirty reads are not possible. Non-repeatable reads and
phantoms are possible.

 4 Dirty reads and non-repeatable reads are not possible.
Phantoms are possible.

 8 Transactions are serializable. Dirty reads, non-repeatable reads,
and phantoms are not possible.

16 Transactions are serializable, but higher concurrency is possible
than with 8. Dirty reads are not possible.

Typically, 8 is implemented by using locking protocols that reduce concurrency and 16 is
implemented by using a non-locking protocol such as record versioning. Oracle's Read
Consistency isolation level is an example of 16.

By default, the SQL driver set the transaction isolation level to what is set in the data source. The
other drivers set it to 1.

Database Drivers 186

The return number is the current value of the isolation level. A zero return indicates the file is not
connected to a database.

IsolationLevel uses the ODBC isolation level standard. This may not be the same as the isolation
levels documented on the target driver’s native back end. For example, with Sybase's ASA, the
documented isolation levels are 0, 1, 2 and 3 and they correspond to

ODBC level Sybase Level

 1 0
 2 1
 4 2
 8 3
 16 N/A

SQL Accelerators 187

JOINTYPE

 DRIVER('SQLDriver', '/JOINTYPE = Watcom | DB2 | Microsoft | FirstSQL | Inner | None')

 [Join" =] SEND(file, '/JOINTYPE [= Watcom | DB2 | Microsoft | FirstSQL | Inner | None]')

(NOTE: Not valid for ORACLE Accelerator)
The SQL standard does not support joins to more than one child (or parent). Most vendors
consider this limitation unacceptable and have extended the standard. However, they have done
so in different ways. The SQL driver attempts to determine the join type used by the backend, but
if it does not get it right, then you should use the JOINTYPE driver string in the primary file of the
view. Note that specifying Inner is normally slower than Watcom, DB2, Microsoft or FirstSQL and
None is slower than Inner, but will work with all backends because the join is done on the client.

When using ODBC, the ODBC 3.0 standard does support multiple joins, so ODBC 3.0 compliant
drivers should not require this switch.

JOINTYPE=DB2

This is the join syntax used by IBM's DB2. This generates ANSI compliant outer joins. The Base
Normal Form for the relevant DB2 specification is:

from-clause ::=
FROM <table-ref>

table-ref::=
<single-table> |
<joined-table>

single-table ::=
table-name AS correlation-name

joined-table ::=
<table-ref> LEFT OUTER JOIN <single-table> ON join-

condition

Database Drivers 188

JOINTYPE=MICROSOFT

This is the join syntax specified by the ODBC 2.0 spec. The Base Normal Form for the relevant
ODBC spec is:

from-clause ::=
FROM <table-ref> |
FROM <odbc-joined-table>

table-ref ::=
<single-table> |
<joined-table>

single-table ::=
table-name AS correlation-name

odbc-joined-table ::=
{oj <joined-table> }

joined-table ::=
<single-table> LEFT OUTER JOIN <table-ref> ON join-

condition

JOINTYPE=WATCOM

This is the join syntax used by SQL Anywhere and is a merger of the ODBC and ANSI
specifications. The Base Normal Form for this syntax is:

from-clause ::=
FROM <table-ref> |
FROM <odbc-joined-table>

table-ref ::=
<single-table> |
<joined-table>

single-table ::=
table-name AS correlation-name

odbc-joined-table ::=
{oj <joined-table> }

joined-table ::=
<table-ref> LEFT OUTER JOIN <single-table> ON join-

condition

JOINTYPE=FIRSTSQL

This is the join syntax used by FirstSQL and is not recommended to be used with any other file
format.

SQL Accelerators 189

JOINTYPE=INNER

This is a format that should work with any database, but is likely to be very slow.

JOINTYPE=NONE

This indicates to perform the join on the client.

Database Drivers 190

LOGFILE

 DRIVER('SQLDriver', '/LOGFILE [= Pathname] [[message]]')

 [LogFile" =] SEND(file, '/LOGFILE [= Pathname] [[message]]')

The LOGFILE driver string turns logging on and off, and optionally writes a message to the log
file. Turning the LOGFILE switch on writes Clarion I/O statements processed by the driver to the
specified log file. The LOGFILE driver string is equivalent to the Profile switch described in the
Debugging Your SQL Application section.

Pathname is the full pathname or the filename of the log file to write. If you do not specify a path,
the driver writes the log file to the current directory. If Pathname is omitted, the driver writes the
log to SQLDriver.log in the current directory.

If the log file already exists, the driver appends to it; otherwise, the driver creates the log file.

The message is optional, however, if included, it must be surrounded by square brackets ([]) and
a space must preceed the opening square bracket.

Note: /LOGFILE must be the last driver string specified by the DRIVER attribute.

SQL Accelerators 191

NESTING

 DRIVER('SQLDriver', '/NESTING = TRUE | FALSE ')

 [Nest" =] SEND(file, '/NESTING [= TRUE | FALSE]')

(NOTE: Not valid for ORACLE Accelerator)
Some SQL drivers do not support parent->child->grandchild style views. The SQL driver attempts
to determine if this is supported. If the driver does not get it right and the backend does not
support these type of views, then you need to set NESTING=FALSE. This causes the join to be
done on the client.

ODBCCALL

 DRIVER('SQL Driver', '/ODBCCALL = TRUE | FALSE ')

 [Call" =] SEND(file, '/ODBCCALL [= TRUE | FALSE]')

By default (ODBCCALL = True) the SQL Accelerator reformats your CALL statements to match
the ODBC standard call syntax. To disable this automatic reformatting, set ODBCCALL=FALSE.

ORDERINSELECT
 DRIVER('SQLDriver', '/ORDERINSELECT= TRUE | FALSE')

 [OIS" =] SEND(file, '/ORDERINSELECT [= TRUE | FALSE]')

(NOTE: Not valid with the Oracle Accelerator)
Some backends require that any fields used in the ORDER BY clause also appear in the
SELECT statement. By setting this property to true the driver will make sure this rule is applied for
all views regardless of the fields projected. You can also read PROP:OrderInSelect to get its
current value

USEINNERJOIN

 DRIVER('SQLDriver', '/USEINNERJOIN= TRUE | FALSE')

 [Join" =] SEND(file, '/USEINNERJOIN [= TRUE | FALSE]')

By default (USEINNERJOIN = True) the SQL Accelerator generates the following ANSI SQL for
inner joins:
SELECT ... FROM table1 INNER JOIN table2 ON table1.field=table2.field

However, not all backends support ANSI SQL. The driver provides an alternative syntax for inner
joins. To generate the following alternative syntax, set USEINNERJOIN=FALSE:
SELECT ... FROM table1, table2 WHERE table1.field=table2.field

Database Drivers 192

VERIFYVIASELECT
 DRIVER('SQL Driver', '/VERIFYVIASELECT = TRUE | FALSE')

 [Verify" =] SEND(file, '/VERIFYVIASELECT [= TRUE | FALSE]')

VERIFYVIASELECT lets the SQL Driver use an alternative, sometimes faster, method to validate
fields when opening a table. By default (VERIFYVIASELECT=FALSE), the SQL Driver uses the
SQLColumns function to validate fields. However, some backends (particularly SQL Anywhere)
can validate fields faster using a SELECT statement. To verify fields using the SELECT
statement, set VERIFYVIASELECT to TRUE.

VERIFYVIASELECT defaults to TRUE for SQL Anywhere backends.

SQL Accelerators 193

WHERE (SQL Driver String)

 [Where" =] SEND (file, '/WHERE [where-clause]')

The SQL Accelerator drivers automatically build SQL WHERE clauses when your Clarion code
contains a SET followed by a NEXT or PREVIOUS. You can customize the driver generated
WHERE clause by using the WHERE driver string. You can also set the WHERE driver string at
runtime with the use of PROP:WHERE. PROP:WHERE is a write-only property.

The SEND must be executed after the SET statement and before the NEXT or PREVIOUS
statement.

Note: The SET statement clears any WHERE clause set by the SEND statement.

Because the SQL driver's generated SELECT statement is not compiled until the NEXT or
PREVIOUS statement, the SEND function posts no error code and returns no result. For
example:
Orders FILE,PRE(Ord),DRIVER('ODBC'),NAME('Ord')
NameDate KEY(+Ord:NameId,-Ord:Date)
Record RECORD
Name STRING(12),NAME('NameId')
Date DATE,NAME('OrderDate')
Type STRING(1),NAME('OrderType')
Details STRING(20),NAME('OrderDetails')

END
END

CODE
Ord:Name = 'SMITH'
SET(Ord:NameDate,Ord:NameDate)
SEND(Ord, '/WHERE OrderType = "M"’)

!or you can use Ord{PROP:WHERE} = Ord{PROP:WHERE} & ‘AND OrderType = "M"'
LOOP

NEXT(Orders)
!...some processing

END

This generates a SELECT statement similar to:
SELECT NameId,OrderDate,OrderType,OrderDetails FROM Orders

WHERE (NameID >= 'SMITH') AND (OrderType = 'M')

Database Drivers 194

ZERODATE

DRIVER(''SQLDriver'', '/ZERODATE = NULL | TRUE | FALSE')

 [Nulls" =] SEND(file, '/ZERODATE [= NULL | TRUE | FALSE]')

ZERODATE defines how the target driver should generate a WHERE clause for cleared
DATE and TIME fields and replaces the \ZEROISNULL driver string.

ZERODATE=NULL is equivalent to ZEROISNULL=TRUE and is the default
behavior.

ZERODATE=0 (FALSE) is equivalent to ZEROISNULL=FALSE.

ZERODATE=1 (TRUE) indicates that a cleared date will be generated as 01/01/0001 and
a cleared time is generated as 0.

If both ZERODATE and ZEROISNULL is specified in the driver string, the last one will be
used.

If you use the driver string editor in the dictionary editor, it will automatically convert
ZEROISNULL to the equivalent ZERODATE.

ZEROISNULL
 DRIVER(''SQLDriver'', '/ZEROISNULL = TRUE | FALSE')

 [Nulls" =] SEND(file, '/ZEROISNULL [= TRUE | FALSE]')

(NOTE: Not valid for ORACLE Accelerator)
ZEROISNULL lets the SQL Accelerator Drivers set DATE and TIME fields to zero (0) rather than
null. By default (ZEROISNULL=TRUE), the SQL Accelerator Drivers assumes a DATE or TIME
field with a value of zero (0) should be a null value in the backend database, and adjusts the
values to NULL when writing to the backend. To allow the driver to set DATE and TIME fields to
zero rather than null, set ZEROISNULL to FALSE.

SQL Accelerators 195

SQL Driver Properties(Generic)

PROP:Alias
PROP:Alias sets or returns the alias the SQL Accelerator driver uses when generating SELECT
statements for a view. PROP:Alias only returns a value previously set using PROP:Alias. For
example:
Customer{PROP:Alias} = 'C' !set new table alias
OldAlias" = Customer{PROP:Alias} = '' !use default alias

Tip: Prior to an assignment to PROP:Alias, the return value for PROP:Alias is an empty
string.

The SQL driver generates an SQL statement which uses an Alias of "A" for the first file in the
View, "B" for the second etc. If you wish to use Prop:SQLFilter your filter has to be compatible
with the previously generated SQL statement - ergo: you need use A/B/etc as the file prefixes.
You can use file{PROP:Alias} to specify what alias the driver should use when constructing
SELECT statements for views.

PROP:AlwaysRebind
PROP:AlwaysRebind sets or returns the toggle that controls whether the SQL Accelerator
rebinds memory locations when a NULL state changes.

For all backends except MSSQL, PROP:AlwaysRebind defaults to 0 or False, so the SQL driver
does not rebind memory locations when a NULL state changes. However, some SQL backends
(including MSSQL) do not recheck the null state, so they must have the memory location rebound
to force the change of null state. Setting PROP:AlwaysRebind to 1 or True tells the SQL
Accelerator to do this extra binding.

PROP:ConnectString
PROP:ConnectString returns an SQL database's connection information. For example:
AFileOwner STRING(256)
AFile FILE,DRIVER('ODBC'),OWNER(AFileOwner)
CODE
AFileOwner='DataSource'
OPEN(Afile)
IF NOT ERRORCODE()

AFileOwner=AFile{PROP:ConnectString}
END

Database Drivers 196

PROP:DBMSver
Good for all SQL Drivers except Oracle.
File{PROP:DBMSver} returns a character string indicating the version of the DBMS accessed by
the driver. The version is of the form ##.##.####, where the first two digits are the major version,
the next two digits are the minor version, and the last four digits are the release version.

PROP:Details
See the Details switch described in the Debugging Your SQL Application section.

PROP:Disconnect
PROP:Disconnect CLOSEs any open files in the target file's database, then disconnects the
application from the database.
EXAMPLE:

FileLabel{PROP:Disconnect} !No equal sign needed

SQL Accelerators 197

PROP:GroupBy, PROP:Having
The SQL view engine supports PROP:GroupBy and PROP:Having. These properties allow you
to add respectively GROUP BY and HAVING clauses to your SELECT statement. Note that
PROP:GroupBy must be set first to allow PROP:Having to be generated.

See Also:

PROGRAM

MAP
END

EMP FILE,DRIVER('ORACLE'),NAME('EMP'),PRE(EMP)
P_EKY_EMP KEY(EMP:EMPNO),NOCASE,OPT,PRIMARY
KEY_DEP KEY(EMP:DEPTNO),DUP,NOCASE,OPT
Record RECORD
EMPNO SHORT !Emp-no
ENAME CSTRING(11) !Employee name
JOB CSTRING(10) !Job
HIREDATE DATE !Hiredate
MGR SHORT !Manager
SAL PDECIMAL(7,2) !Salary
COMM PDECIMAL(7,2) !Commisison
DEPTNO BYTE

END
END

MyView VIEW(EMP)
PROJECT(EMP:Mgr)
PROJECT(EMP:Sal)

END

CODE
OPEN(EMP)
OPEN(MyView)
MyView{'EMP:Sal',PROP:Name} = 'sum(sal)'
MyView{PROP:GroupBy} = 'Mgr'
MyView{PROP:Having} = 'sum(sal) > 100000'

SET(MyView)
NEXT(MyView)

The example code above is the equivalent to "SELECT mgr, sum(sal) FROM EMP
GROUP BY mgr HAVING sum(sal) > 100000"

In other words, this code will return a list of all Manager IDs and the total salary of their
subordinates if their subordinates make a total of more than 100000.

Database Drivers 198

PROP:hdbc
(NOTE: Not valid for ORACLE Accelerator)
PROP:hdbc returns the current hdbc used by the SQL driver. Thus ?MyFile{PROP:hdbc} may be
used for ODBC API calls requiring hdbc.

PROP:henv
(NOTE: Not valid for ORACLE Accelerator)
PROP:henv returns the current henv used by the SQL driver. Thus ?MyFile{PROP:henv} may be
used for ODBC API calls requiring henv. For example, the SQLDescribeCol function:
rc# = SQLDataSources(Myfile{PROP:henv},SQL_FETCH_NEXT,ODBC:driver, |

drvLen,drvlen,ODBC:Description,desclen,desclen)

PROP:Hint
The HINT driver string is valid for Oracle and MS-SQL drivers..

Oracle support for PROP:HINT

MS-SQL support for PROP:HINT

PROP:hstmt
(NOTE: Not valid for ORACLE Accelerator)
PROP:hstmt returns the current hstmt used by the SQL driver. Thus ?MyFile{PROP:hstmt} may
be used for ODBC API calls requiring hstmt. For example, the SQLDescribeCol function:
Myfile{PROP:SQL} = 'Select * from ATable'
rc# = SQLDescribeCol(Myfile{PROP:hstmt},Num,Name,Max,NameL, |

Type,Def,Scale,Null)

PROP:Inner
PROP:Inner is a writable property for SQL Accelerator drivers. This is useful for testing the ODBC
USEINNERJOIN driver string. See PROP:Inner in the Language Reference for more information.

PROP:IsolationLevel

PROP:IsolationLevel is used to define transaction isolation levels. See ISOLATIONLEVEL

SQL Accelerators 199

PROP:LogonScreen
PROP:LogonScreen sets or returns the value that determines whether the driver automatically
prompts for logon information. By default, PROP:LogonScreen=TRUE, and the driver displays a
logon window if no connect string is supplied. If set to FALSE, and there is no connect string, the
OPEN(file) fails and FILEERRORCODE() returns a driver specific error code. For example:
AFile FILE,DRIVER('SQLAnywhere')
!file declaration with no userid and password

END

CODE
AFile{PROP:LogonScreen}=True !enable auto login screen
OPEN(Afile)

In the above example, the logon screen uses the SQLAnywhere Connect dialog. Consult your
specific database documentation for more information on this dialog. The end-user's ability to use
the connect dialog will depend on the security surrounding the specific database. For example,
the end-users may have access rights to a named database that they can access with the
database’s client software, but they may not have access rights to other files that comprise the
database.

 PROP:LogonScreen is valid for all SQL based drivers.

PROP:Log
PROP:Log writes a string to the log file. For example:
AFile FILE,DRIVER('ODBC'),OWNER('DataSource')
CODE
OPEN(Afile)
IF NOT ERRORCODE()
AFile{PROP:Log}='AFile opened:'&CLOCK()

END

Database Drivers 200

PROP:LogFile
Same as PROP:Profile -- or backward compatibility.

PROP:LoginTimeout
(NOTE: Not valid for ORACLE Accelerator)
PROP:LoginTimeout sets a time limit in seconds for an SQL database's login screen. If the user
does not respond in the allotted time, the connection fails and the login is aborted. The default is
to wait indefinitely for user input. Some servers do not support this feature and may ignore the
instruction. For example:
AFile FILE,DRIVER('SQL Driver'),OWNER('DataSource')
CODE
OPEN(Afile)
IF NOT ERRORCODE()
AFile{PROP:LoginTimeOut}=60 !allow 1 minute for login

END

PROP:OrderAllTables
Setting PROP:OrderAllTables to True forces the SQL Accelerator driver to use linking fields and
secondary files' key component fields, as well as the primary file's key component fields, in the
ORDER BY clause it sends to the server. You may need this switch if you are using a Clarion
VIEW that joins multiple tables. By default (View{PROP:OrderAllTables}=FALSE), the SQL
Accelerator driver includes only the primary file's key components in the ORDER BY clause it
sends to the SQL server. For example:
BRW1::View:Browse VIEW(Customer)

PROJECT(CUST:CustNo)
PROJECT(CUST:Name)
PROJECT(CUST:Zip)
PROJECT(CUST:CustNo)
JOIN(ORD:ByCustomer,CUST:CustNo)

PROJECT(ORD:OrderNo)
PROJECT(ORD:OrderDate)

END
END

CODE
?BRW1::View:Browse{PROP:OrderAllTables} = TRUE

Accessing this VIEW then generates a SELECT statement similar to:
SELECT CustNo,Name,Zip,OrderNo,OrderDate FROM Customer,Ord

WHERE (Customer.CustNo = Ord.CustNo)
ORDER BY CustNo,OrderNo

SQL Accelerators 201

PROP:OrderInSelect
(NOTE: Not valid for ORACLE Accelerator)
Some SQL backends require that any fields used in the ORDER BY clause also appear in the
SELECT statement. By setting this property to TRUE (1) the driver will make sure that this rule is
applied for all views regardless of the fields that you project.

PROP:Profile
Setting PROP:Profile to true tells the driver to include Clarion I/O statements in the log file. See
the Profile switch described in the Debugging Your SQL Application section.

Profile=1 tells the driver to include the Clarion I/O statements in the log file; Profile=0 tells the
driver to omit Clarion I/O statements. The Profile switch must be turned on for the Details switch
to have any effect.

Details=1 tells the driver to include record buffer contents in the log file; however, if the file is
encrypted, you must turn on both the Details switch and the /ALLOWDETAILS switch to log
record buffer contents (see ALLOWDETAILS). Details=0 tells the driver to omit record buffer
contents. The Profile switch must be turned on for the Details switch to have any effect.

Note: /ALLOWDETAILS is only valid as a parameter of the DRIVER attribute (Driver
Options field in the File Properties dialog). It is not valid with the SEND command.

PROP:QuoteString
(NOTE: Not valid with Oracle Accelerator.)
PROP:QuoteString sets or returns the column name delimiter (typically a quote) that the SQL
Accelerator Driver uses to surround column names within its generated SQL statements. Different
backends require different delimiter characters.

You can use PROP:QuoteString to build your own dynamic SQL statements. Note that you must
enclose any column names that are also SQL reserved words in the correct delimiter character.
See Using Embedded SQL.

Some backends do not correctly return the delimiter character. For those backends you should
set the value of PROP:QuoteString before using it.

Database Drivers 202

PROP:SQL
You can use Clarion's property syntax (PROP:SQL) to execute SQL statements in your program
code by using PROP:SQL and naming the FILE or imported SQL VIEW in the data dictionary as
the target within the normal execution of your program. This is only valid when using an SQL file
driver (such as the ODBC, Scalable SQL, or Oracle drivers). You can send any SQL statements
supported by the SQL server.

This capability lets your program do backend operations independent of the SQL Accelerator
driver's generated SQL. For example, multi-record updates can often be accomplished more
efficiently with a single SQL statement than with a template generated Process procedure that
updates one record at a time. In cases like these it makes sense for you to take control and send
custom SQL statements to the backend, and PROP:SQL lets you do this.

If you issue an SQL statement that returns a result set (such as an SQL SELECT statement), you
use NEXT(file) to retrieve the result set one row at a time, into the file's record buffer. The FILE
declaration receiving the result set must have the same number of fields as the SQL SELECT
statement will return. If the Clarion ERRORCODE procedure returns 90, the FILEERRORCODE()
and FILEERROR() functions return any error code and error message set by the back-end SQL
server.

You may also query the contents of PROP:SQL to get the last SQL statement issued by the file
driver.

Examples:
SQLFile{PROP:SQL}='SELECT field1,field2 FROM table1' |

& 'WHERE field1 > (SELECT max(field1)' |
& 'FROM table2' ! Returns a result set you

! get one row at a time
! using NEXT(SQLFile)

!Call stored procedure
SQLFile{PROP:SQL}='CALL GetRowsBetween(2,8)'

!No result set
SQLFile{PROP:SQL}='CREATE INDEX ON table1(field1 DESC)'

!DBA tasks
SQLFile{PROP:SQL}='GRANT SELECT ON mytable TO fred'

!Get last SQL statement
SQLString=SQLFile{PROP:SQL}

SQL Accelerators 203

SEND

You can use the Clarion SEND procedure to send an SQL command to the backend database.
This is provided for backward compatibility with early versions of Clarion. We recommend using
the property syntax to send SQL statements to the backend database.

Examples:
SEND(SQLFile,'SELECT field1,field2 FROM table1' |

& 'WHERE field1 > (SELECT max(field1)' |
& 'FROM table2') !Returns a result set you

! get one row at a time
! using NEXT(SQLFile)

SEND(SQLFile,'CALL GetRowsBetween(2,8)') !Call stored procedure

SEND(SQLFile,'CREATE INDEX ON table1(field1 DESC)') !No result set

SQL does a good job of handling batch processing procedures such as: printing reports,
displaying a screen full of table rows, or updating a group of table rows.

The SQL Accelerator drivers take full advantage of this when browsing a table or printing.
However, they do not always use it to its best advantage with the Process template or in code
which loops through a table to update multiple records. Therefore, when doing batch updates to a
table, it can be much more efficient to execute an embedded SQL statement than to rely on the
code generated by the Process template.

For example, to use PROP:SQL to increase all Salesman salaries by 10% you could:
SQLFile FILE,DRIVER('Oracle'),NAME(SalaryFile)
Record RECORD
SalaryAmount PDECIMAL(5,2),NAME('JOB')

. .
CODE
SqlFile{PROP:SQL} = 'UPDATE SalaryFile SET '&|

'SALARY=SALARY * 1.1 WHERE JOB=''S'''

The names used in the SQL statement are the SQL table names, not the Clarion field names.

Database Drivers 204

PROP:SQLFilter
You can use PROP:SQLFilter to filter your VIEWs using native SQL code rather than Clarion
code. This is only appropriate when using an SQL file driver (such as the ODBC, Scalable SQL,
or Oracle drivers). If the first character of the PROP:SQLFilter expression is a plus sign (+), the
PROP:SQLFilter expression is appended to any existing PROP:Filter expression and both are
used. Omitting the plus sign replaces the existing PROP:Filter expression with the
PROP:SQLFilter.

When you use PROP:SQLFilter, the SQL filter is passed directly to the server. As such it cannot
contain the names of tables, variables, or functions that the server is not aware of; that is the filter
expression must be valid SQL syntax with valid SQL table and column names. For example:
View{PROP:SQLFilter} = 'Date = TO_DATE(''01-MAY-1996'',''DD-MON-YYYY'')'

or
View{PROP:SQLFilter} = 'StrField LIKE ''AD%'''

Note that the SQL Accelerator incorporates the PROP:SQLFilter expression into the WHERE
clause of a generated SELECT statement. The generated SELECT statement may reference one
or more tables by aliases. If your filter also references tables (e.g., Customer.Name < 'T'), you
must use the same alias names generated by the SQL Accelerator. By default, the SQL
Accelerator uses the next letter of the alphabet as the alias name. For example, the Accelerator
uses 'A' as the alias for the first table in the generated SELECT statement, then 'B' for the next
table, and so on. You can use PROP:Alias to control the alias names generated by the SQL
Accelerator. See PROP:Alias for more information.

Combining VIEW Filters and SQL Filters

When you use PROP:SQLFilter, the SQL filter may replace any filter specified for the VIEW, or it
may be in addition to a filter specified for the VIEW. Prefix the SQL filter with a plus sign (+) to
append the SQL filter to the existing VIEW filter. For example:
View{PROP:SQLFilter} = '+ StrField LIKE ''AD%'''

When you append the SQL filter by using the plus sign, the logical end result of the filtering
process is (View Filter) AND (SQL Filter).

Omit the plus sign (+) to replace the Clarion filter with the SQL filter. When you replace the
Clarion filter with the SQL filter by omitting the plus sign, the logical end result of the filtering
process is simply (SQL Filter).

See Also: PROP:Filter for additional information.

SQL Accelerators 205

PROP:SQLJoinExpression
You can use PROP:SQLJoinExpression to structure your VIEWs using native SQL code rather
than Clarion code.

Note: Using PROP:SQLJoinExpression may hurt performance in some circumstances.

When you use PROP:SQLJoinExpression, the SQL join expression is passed directly to the
server. As such it cannot contain the name of variables or functions that the server is not aware
of; that is the join expression must be valid SQL syntax with valid SQL column names. For
example:
View{PROP:SQLJoinExpression} = 'TO_DATE - FROM_DATE'

Combining VIEW Orders and SQL Orders

When you use PROP:SQLJoinExpression, the SQL join expression may replace any the join
specified for the VIEW, or it may be in addition to the join specified for the VIEW. Prefix the SQL
join with a plus sign (+) to concatenate the SQL join expression to the existing VIEW join
expression. For example:
View{PROP:SQLOrder} = '+ TO_DATE - FROM_DATE'

When you concatenate the SQL join by using the plus sign, the result set contains first the Clarion
joined values, then the SQL joined values.

Omit the plus sign (+) to replace the Clarion join expression with the SQL join expression.

See PROP:JoinExpression in the Language Reference for more information.

Tip: PROP:SQLJoinExpression only affects the JOIN portions of the VIEW declaration;
it does not affect the PROJECT portions.

Database Drivers 206

PROP:SQLOrder
You can use PROP:SQLOrder to sort your VIEWs using native SQL code rather than Clarion
code.

Note: Using PROP:SQLOrder may hurt performance in some circumstances.

When you use PROP:SQLOrder, the SQL order is passed directly to the server. As such it cannot
contain the name of tables, variables, or functions that the server is not aware of; that is the order
expression must be valid SQL syntax with valid SQL column names. For example:
View{PROP:SQLOrder} = 'TO_DATE - FROM_DATE'

Note that the SQL Accelerator incorporates the PROP:SQLOrder expression into the ORDERBY
clause of a generated SELECT statement. The generated SELECT statement may reference one
or more tables by aliases. If your order expression also references tables (e.g., Customer.Name <

'T'), you must use the same aliase names generated by the SQL Accelerator. By default, the
SQL Accelerator uses the next letter of the alphabet as the alias name. For example, the
Accelerator uses 'A' as the alias for the first table in the generated SELECT statement, then 'B' for
the next table, and so on. You can use PROP:Alias to control the alias names generated by the
SQL Accelerator. See PROP:Alias for more information.

Combining SQL Orders and VIEW Orders

When you use PROP:SQLOrder, the SQL order may replace any order specified for the VIEW, or
it may be in addition to the order specified for the VIEW. Prefix the SQL order with a plus sign (+)
to append the SQL order to the existing VIEW order. For example:
View{PROP:SQLOrder} = '+ TO_DATE - FROM_DATE'

When you append the SQL order by using the plus sign, the result set is ordered first by the
Clarion order expression, then by the SQL order expression.

Omit the plus sign (+) to replace the Clarion order with the SQL order.

See PROP:Order in the Language Reference for more information.

ADO Database Driver 207

Database Drivers 208

ADO Database Driver

What is ADO?

ADO is a Microsoft technology, and stands for ActiveX Data Objects. It is a high-level
programming interface used to access data in a database. ADO is designed as an easy-
to-use application level interface to Microsoft's low-level data access interface, OLE DB.

ADO is automatically installed with Microsoft IIS as an Active X component. ADO is a
common way to access a database from inside a web page (like an ASP page). For
example, to connect to a database inside an ASP page:

1. Create an ADO connection to a database

2. Open the database connection

3. Create an ADO recordset

4. Open the recordset

5. Extract the data you need from the recordset

6. Close the recordset

7. Close the connection

The important thing to note here is the specific opening and closing of the database
connection. Failure to specifically close an ADO connection can result in memory leakage.

ADO Database Driver 209

ADO Requirements

The use of Clarion with ADO requires that you have installed the Microsoft Data Access
Components (MDAC) interface, which is a free download from the Microsoft web site.
You must have Version 2.62 or later installed.

The general flow of using the new ADO interface in Clarion:

1. Import your ADO tables using the Dictionary Editor.

2. Add the ADO Global Extension to your application

3. Add your various ADO procedures as necessary.

Database Drivers 210

ADO Logging

The ADO Synchronizer supports trace logging.

Logging can only be turned on via the WIN.INI.

The section in the WIN.INI is called

[CWADOSYNCHRONISER]

Two possible settings in this section are:

Trace=0|1

TraceFile=filename

Trace must be set to 1 to turn on logging

TraceFile specifies the file you want to log to. If not supplied then the log is
ADOSYNCHRONISER.LOG

The DrvTrace example application has been updated to support logging of the ADO
Synchronizer.

This logging is active during the synchronization process with the Dictionary
Editor. It is not to be confused with the normal trace logging that can be active in
your application at runtime.

ADO Database Driver 211

Database Drivers 212

MSSQL Accelerator

MSSQL Accelerator Overview

MSSQL Server

For complete information on the MSSQL database system, please review Microsoft's SQL Server
documentation.

MSSQL Accelerator

The MSSQL Accelerator is one of several SoftVelocity SQL Accelerator drivers. These SQL
Drivers share a common code base and many common features such as SoftVelocity's unique,
high speed buffering technology, common driver strings, and SQL logging capability. See SQL
Accelerators for information on these common features.

The MSSQL Accelerator converts standard Clarion file I/O statements and function calls into
optimized SQL statements, which it sends to the backend MSSQL server for processing. This
means you can use the same Clarion code to access both MSSQL tables and other file systems
such as TopSpeed files. It also means you can use Clarion template generated code with your
SQL databases.

All the common behavior of all the SQL Accelerators is documented in the SQL Accelerators
section. All behavior specific to this driver is noted here.

MSSQL Accelerator 213

MSSQL Accelerator SQL Import Wizard--Login Dialog
Clarion's Dictionary Editor Import Wizard lets you import MSSQL table definitions into your
Clarion Data Dictionary. When you select the MSSQL Accelerator from the driver drop-down list,
the Import Wizard opens the Login/Connection dialog. The Login/Connection dialog collects
the connection information for the MSSQL database.

Note: If you are using a Trusted Connection (Integrated NT Security), you must establish
a connection to the NT workstation running the MSSQL Server before you can
connect to the MSSQL database and import table definitions. You can verify your
connection by running the MSSQL ISQL_w Server utility installed with your MSSQL
Client software.

Fill in the following fields in the Login/Connection dialog:

Servername
Select the workstation running the MSSQL database to import
from. If the Servername list is empty, you may type in the name.
See your DBA or network administrator for information on how
the server is specified.

Username
For Standard Security, type your MSSQL Username. For Trusted
Security (Integrated NT Security) no Username is required. See
your server documentation or your DBA for information on
applicable Usernames and security methods.

Password
For Standard Security, type your MSSQL Password. For Trusted
Security (Integrated NT Security) no Password is required. See
your server documentation or your DBA for information on
applicable Passwords and security methods.

Database
Select the MSSQL database that contains the tables or views to
import. If the Database list is empty, you may type in the name.
See your server documentation or your DBA for information on
database names.

Filter
Optionally, provide a filter expression to limit the list of tables and
views to import. The filter expression queries the dbo.sysobjects
table. The filter expression is limited to 1024 characters in length.

Tip: The filter is case sensitive, so type your filter value accordingly.

Database Drivers 214

 Following is a list of the column names (and their Clarion
datatypes) you can reference in your filter expression. Generally,
filtering on MSSQL system tables requires not only an intimate
knowledge of the MSSQL system tables, but also of the MSSQL
stored procedures. For example, to filter on table owner:
uid = user_id('DBO')

 See your SQL server documentation for information on the
MSSQL system tables and stored procedures.

 name CSTRING(31)
id LONG
uid SHORT
type STRING(2)
userstat SHORT
sysstat SHORT
indexdel SHORT
schema_ver SHORT
refdate STRING(8)
crdate STRING(8)
version LONG
deltrig LONG
instrig LONG
updtrig LONG
seltrig LONG
category LONG
cache SHORT

Next >
Press this button to open the Import Wizard's Import List dialog.

MSSQL Accelerator 215

MSSQL Accelerator SQL Import Wizard--Import List Dialog
When you press the Next > button, the Import Wizard opens the Import List dialog. The Import
List dialog lists the importable items.

Highlight the table or view whose definition to import, then press the Finish button to import. The
Import Wizard adds the definition to your Clarion Data Dictionary, then opens the File Properties
dialog to let you modify the default definition.

Import additional tables or views by repeating these steps. After all the items are imported, return
to the Dictionary Editor where you can define relationships and delete any columns not used in
your Clarion application. See SQL Accelerators--Define Only the Fields You Use.

Tip: You can use the Clarion Enterprise Edition Dictionary Synchronizer to import an
entire database, including table relationships, in a single pass.

Database Drivers 216

MSSQL Accelerator Connection Information

 (and Driver Configuration--File Properties)
Typically, you add MSSQL support to your application by importing the table definitions into your
Clarion Data Dictionary. The Import Wizard automatically fills in the File Properties dialog with
default values based on the imported item. However, you can use the Owner Name field in the File
Properties dialog to further configure the way the MSSQL Accelerator accesses the data.

The OWNER attribute for MSSQL takes the format:
server,<database>,<uid>,<pwd><;LANGUAGE=language><;APP=name><;WSID=name>

LANGUAGE
The language used by MSSQL Server.

APP
The name of the application.

WSID
The workstation ID. Typically, this is the network name of the
computer on which the application resides.

See your MSSQL Server documentation for information on these settings.

Tip: Type an exclamation point (!) followed by a variable name in the Owner Name field
to specify a variable rather than hard coding the OWNER attribute . For example:
!GLO:SQLOwner.

MSSQL Accelerator 217

MSSQL Accelerator Performance Considerations
The MSSQL Accelerator uses cursors. The MSSQL Server will not use an Index with a cursor,
but it will use a Unique Constraint with a cursor. Therefore we recommend using Unique
Constraints rather than Indexes wherever possible.

MSSQL Accelerator Calling a Stored Procedure
Stored procedures can return an output parameter and return results. These can only be returned
if the file is opened in Read-Only mode (10H). The output parameters and return results are not
available until all records have been retrieved by a SELECT statement.
PROGRAM
MAP
CheckError(STRING) !Check for errorcodes
CallProc(STRING) !Call Stored Procedure

END

MyFile FILE,DRIVER('MSSQL')
Record RECORD
c LONG

END
END

Ret LONG
In SHORT(10)
Out STRING(10)
CreateReq BYTE(FALSE)

CODE
BIND('Ret',Ret)
CheckError('BIND Ret')
BIND('Out',Out)
CheckError('BIND Out')
BIND('In',In)
CheckError('BIND In')

MyFile{PROP:SQL} = 'DROP TABLE SProctable'
MyFile{PROP:SQL} = 'CREATE TABLE SProctable (c INT)'

!Give MyFile initial data
OPEN(MyFile)
CheckError('Open')
MyFile.c=5
ADD(MyFile)
CheckError('Add 5')
MyFile.c=7
ADD(MyFile)

Database Drivers 218

CheckError('Add 7')
MyFile.c=8
ADD(MyFile)
CheckError('Add 8')

!Initialize and Create Stored Procedures
MyFile{PROP:SQL} = 'DROP PROC SProc1'
MyFile{PROP:SQL} = 'DROP PROC SProc2'
MyFile{PROP:SQL} = 'DROP PROC SFunc1'
MyFile{PROP:SQL} = 'DROP PROC SFunc2'
MyFile{PROP:SQL} = 'DROP PROC SFunc3'
CallProc('CREATE PROC SFunc1 @input VARCHAR(10),@output VARCHAR(10) '& |
'OUTPUT AS SELECT @output = CHAR(ASCII('')'')+c) FROM SProctable ' & |
'WHERE c=7 ' & RETURN ASCII(@input) ')

CallProc('CREATE PROC SFunc2 @sin INT, @strin VARCHAR(10) AS ' & |
' SELECT c FROM SProctable RETURN @sin + ASCII(@strin)')

CallProc('CREATE PROC SFunc3 @input VARCHAR(10) AS ' & |
' RETURN ASCII(@input) ')

CallProc('CREATE PROC SProc1 @inp INT AS ' & |
' INSERT INTO SProctable values(@inp) ')

CallProc('CREATE PROC SProc2 @inp INT AS ' & |
' INSERT INTO SProctable values(@inp) ' & |
' SELECT c FROM SProctable')

CLOSE(MyFile)

!Open MyFile in Read-Only mode
OPEN(MyFile,10H)

!Call Stored Procedure passing input value using NORESULTCALL
!sets output parameter
CallProc('&Ret = NORESULTCALL SFunc3(''1'')')
IF Ret ~= VAL('1')

MESSAGE('Ret of NORESULTCALL SFunc3 =' & Ret)
END

!Call Stored Procedure passing input value, sets output parameter
CallProc('&Ret = CALL SFunc3(10)')
IF Ret ~= VAL('1')

MESSAGE('Ret of SFunc3 =' & Ret)
END

!Call Stored Procedure passing input value, no return values
CallProc('CALL SProc1(10)')

!Call Stored Procedure passing input value, return return code
CallProc('CALL SProc1(&in[IN])')

MSSQL Accelerator 219

!Call Stored Procedure passing input value, return output parameter
CallProc('&Ret = CALL SFunc1(''1'',&out)')
IF Ret ~= VAL('1')

MESSAGE('Ret of SFunc1 =' & Ret)
END
IF out ~= CHR(VAL(')')+7)

MESSAGE('out of SFunc1 =' & out)
END

!Call Stored Procedure passing input value, return return code
CallProc('CALL SProc2(&in[IN])')

NEXT(MyFile)
CheckError('Next SProc2')
!Call Stored Procedure passing input values, return output parameter
CallProc('&Ret = CALL SFunc2(7, '')'')')
LOOP WHILE ~ERRORCODE()

NEXT(MyFile)
END
IF Ret ~= VAL(')')+7

MESSAGE('out of SFunc2 =' & out)
END
MESSAGE('Done')

!Check for errorcodes
CheckError PROCEDURE(Msg)
CODE
IF ERRORCODE()
IF ERRORCODE() = 90

MESSAGE(Msg & ' ' & FILEERRORCODE() & ':' & FILEERROR())
ELSE

MESSAGE(Msg & ' ' & ERRORCODE() & ':' & ERROR())
END
END

!CallProc calls the stored procedures using the PROP:SQL statement
CallProc PROCEDURE(Str)
CODE
MyFile{PROP:SQL} = Str
CheckError(Str)

Database Drivers 220

MSSQL Accelerator Using Embedded SQL

Calling a Stored Procedure

Stored procedures can return an output parameter and return results. These can only be returned
if the file is opened in Read-Only mode (10H). The output parameters and return results are not
available until all records have been retrieved by a SELECT statement.
PROGRAM
MAP
CheckError(STRING) !Check for errorcodes
CallProc(STRING) !Call Stored Procedure

END

MyFile FILE,DRIVER('MSSQL')
Record RECORD
c LONG

END
END

Ret LONG
In SHORT(10)
Out STRING(10)
CreateReq BYTE(FALSE)

CODE
BIND('Ret',Ret)
CheckError('BIND Ret')
BIND('Out',Out)
CheckError('BIND Out')
BIND('In',In)
CheckError('BIND In')

MyFile{PROP:SQL} = 'DROP TABLE SProctable'
MyFile{PROP:SQL} = 'CREATE TABLE SProctable (c INT)'

!Give MyFile initial data
OPEN(MyFile)
CheckError('Open')
MyFile.c=5
ADD(MyFile)
CheckError('Add 5')
MyFile.c=7
ADD(MyFile)
CheckError('Add 7')
MyFile.c=8

MSSQL Accelerator 221

ADD(MyFile)
CheckError('Add 8')

!Initialize and Create Stored Procedures
MyFile{PROP:SQL} = 'DROP PROC SProc1'
MyFile{PROP:SQL} = 'DROP PROC SProc2'
MyFile{PROP:SQL} = 'DROP PROC SFunc1'
MyFile{PROP:SQL} = 'DROP PROC SFunc2'
MyFile{PROP:SQL} = 'DROP PROC SFunc3'
CallProc('CREATE PROC SFunc1 @input VARCHAR(10),@output VARCHAR(10) '& |
'OUTPUT AS SELECT @output = CHAR(ASCII('')'')+c) FROM SProctable ' & |
'WHERE c=7 ' & RETURN ASCII(@input) ')

CallProc('CREATE PROC SFunc2 @sin INT, @strin VARCHAR(10) AS ' & |
' SELECT c FROM SProctable RETURN @sin + ASCII(@strin)')

CallProc('CREATE PROC SFunc3 @input VARCHAR(10) AS ' & |
' RETURN ASCII(@input) ')

CallProc('CREATE PROC SProc1 @inp INT AS ' & |
' INSERT INTO SProctable values(@inp) ')

CallProc('CREATE PROC SProc2 @inp INT AS ' & |
' INSERT INTO SProctable values(@inp) ' & |
' SELECT c FROM SProctable')

CLOSE(MyFile)

!Open MyFile in Read-Only mode
OPEN(MyFile,10H)

!Call Stored Procedure passing input value using NORESULTCALL
!sets output parameter
CallProc('&Ret = NORESULTCALL SFunc3(''1'')')
IF Ret ~= VAL('1')

MESSAGE('Ret of NORESULTCALL SFunc3 =' & Ret)
END

!Call Stored Procedure passing input value, sets output parameter
CallProc('&Ret = CALL SFunc3(10)')
IF Ret ~= VAL('1')

MESSAGE('Ret of SFunc3 =' & Ret)
END

!Call Stored Procedure passing input value, no return values
CallProc('CALL SProc1(10)')

!Call Stored Procedure passing input value, return return code
CallProc('CALL SProc1(&in[IN])')

!Call Stored Procedure passing input value, return output parameter
CallProc('&Ret = CALL SFunc1(''1'',&out)')
IF Ret ~= VAL('1')

Database Drivers 222

MESSAGE('Ret of SFunc1 =' & Ret)
END
IF out ~= CHR(VAL(')')+7)

MESSAGE('out of SFunc1 =' & out)
END

!Call Stored Procedure passing input value, return return code
CallProc('CALL SProc2(&in[IN])')

NEXT(MyFile)
CheckError('Next SProc2')
!Call Stored Procedure passing input values, return output parameter
CallProc('&Ret = CALL SFunc2(7, '')'')')
LOOP WHILE ~ERRORCODE()

NEXT(MyFile)
END
IF Ret ~= VAL(')')+7

MESSAGE('out of SFunc2 =' & out)
END
MESSAGE('Done')
!Check for errorcodes
CheckError PROCEDURE(Msg)
CODE
IF ERRORCODE()
IF ERRORCODE() = 90

MESSAGE(Msg & ' ' & FILEERRORCODE() & ':' & FILEERROR())
ELSE

MESSAGE(Msg & ' ' & ERRORCODE() & ':' & ERROR())
END
END

!CallProc calls the stored procedures using the PROP:SQL statement
CallProc PROCEDURE(Str)
CODE
MyFile{PROP:SQL} = Str
CheckError(Str)

MSSQL Accelerator 223

MSSQL Accelerator Driver Strings
There are switches or "driver strings" you can set to control the way your application creates,
reads, and writes files with a specific driver. Driver strings are simply messages or parameters
that are sent to the file driver at run-time to control its behavior. See Common Driver Features--
Driver Strings for an overview of these runtime Database Driver switches and parameters.

Tip: A forward slash precedes all SQL Accelerator driver strings. The slash allows the
driver to distinguish between driver strings and SQL statements sent with SEND.

In addition to the standard SQL Driver Strings, the MSSQL Accelerator supports the following
Driver Strings:

Database Drivers 224

HINT
You can tell MSSQL Accelerator to generate MSSQL hints by using the HINT driver string,
DRIVER ('MSSQL','/HINT=hint')

by using /HINT in the key name,
Key KEY(fieldlist),NAME('name /HINT=[&]hint')

with SEND,
SendReturn = SEND (file,' /HINT=[&]hint')

or with the PROP:Hint property,
file{PROP:Hint} = '[&]hint'
HintString = file{PROP:Hint}

The square brackets [] above are used to show that the ampersand (&) is optional.

You can either override the base hint or concatenate a hint. If the first character after the = in the
KEY hint is an ampersand (&), MSSQL Accelerator concatenates the hint onto the FILE hint,
otherwise it overrides the FILE hint.

If the first character after the = in the SEND hint is an ampersand (&) or the first character of a
hint property is an ampersand, MSSQL Accelerator concatenates the hint onto the current hint
(the FILE hint and the KEY hint), otherwise it overrides the FILE and KEY hint.

You can also use PROP:Hint to return the hint that is in use (or will be in use if called after a SET,
but before the first NEXT or PREVIOUS statement.)

Example:
AFile DRIVER('MSSQL','/hint=COST')
AKey KEY(field),NAME('KeyName /HINT=&FIRST_ROWS')
SEND(AFile,'/HINT=FIRST_ROWS')
AFile{PROP:Hint} = 'FIRST ROWS'

MSSQL Accelerator 225

LOGONSCREEN (MSSQL Accelerator)

 DRIVER('MSSQL', '/LOGONSCREEN = TRUE | FALSE ')

 [AutoLogon" =] SEND(file, '/LOGONSCREEN [= TRUE | FALSE]')

See Also: PROP:LogonScreen.

GATHERATOPEN (MSSQL Accelerator)

 DRIVER('MSSQL', '/GATHERATOPEN = TRUE | FALSE ')

By default the driver delays gathering field information until it is required. However, some
backends (like Sybase 11) perform poorly under these conditions. Setting GATHERATOPEN to
TRUE forces the driver to gather most of the field information when the file is opened, which
avoids a slowdown during program execution.

SAVESTOREDPROC (MSSQL Accelerator)

 DRIVER('MSSQL', '/SAVESTOREDPROC= TRUE | FALSE ')

 [SaveProc" =] SEND(file, '/SAVESTOREDPROC [= TRUE | FALSE]')

The MSSQL Accelerator executes SQL statements by creating temporary stored procedures on
the server and executing them. By default (SAVESTOREDPROC=TRUE), these stored
procedures remain on the server until connection to the server is dropped. To remove the
procedures as soon as possible, set SAVESTOREDPROC=FALSE.

Database Drivers 226

TRUSTEDCONNECTION (MSSQL Accelerator)

 DRIVER('MSSQL', '/TRUSTEDCONNECTION = TRUE | FALSE ')

 [Trusted" =] SEND(file, '/TRUSTEDCONNECTION [= TRUE | FALSE]')

By default (TRUSTEDCONNECTION=FALSE), the MSSQL Accelerator requests a standard
connection to SQL Server. To connect using SQL Server integrated security, set
TRUSTEDCONNECTION=TRUE.

Tip: To set the connection type, you must issue the TRUSTEDCONNECTION switch
before the connection is made to the server.

MSSQL Accelerator 227

MSSQL Accelerator Driver Properties
You can use Clarion's property syntax to query and set certain MSSQL Accelerator driver
properties. In addition to the standard SQL Accelerator properties (see SQL Accelerators--SQL
Accelerator Properties), the MSSQL Accelerator supports the following properties.

PROP:LogonScreen (MSSQL Accelerator)
PROP:LogonScreen sets or returns the toggle that determines whether the driver automatically
prompts for logon information. By default (PROP:LogonScreen=True), the driver does display a
logon window if no connect string is supplied. If set to False and there is no connect string, the
OPEN(file) fails and FILEERRORCODE() returns '28000.' For example:
Afile FILE,DRIVER('MSSQL')
!file declaration with no userid and password

END
CODE
AFile{PROP:LogonScreen}=True !enable auto login screen
OPEN(Afile)

The automatic logon screen lets prompts for the following connection information. Consult your
MSSQL documentation for more information on these prompts:

Server
Select the workstation running the MSSQL database to import from. If the Server list is
empty, you may type in the name. See your DBA or network administrator for information
on how the server is specified.

Logon ID
For Standard Security, type your MSSQL Username. For Trusted Security (Integrated NT
Security) no Username is required. See your server documentation or your DBA for
information on applicable Usernames and security methods.

Password
For Standard Security, type your MSSQL Password. For Trusted Security (Integrated NT
Security) no Password is required. See your server documentation or your DBA for
information on applicable Passwords and security methods.

Options
Press this button to enable the following prompts. See your MSSQL Server
documentation for information on these prompts.

Database
Select the MSSQL database that contains the tables or views to access. If the Database
list is empty, you may type in the name. See your server documentation or your DBA for
information on database names.

Language
The language used by MSSQL Server.

Database Drivers 228

Application Name
The name of the application.

WorkStation ID
The workstation ID. Typically, this is the network name of the computer on which the
application resides.

MSSQL Accelerator 229

MSSQL Accelerator Supported File Commands and Functions

File Attributes Supported

 CREATE Y

 DRIVER(filetype [,driver string]) Y

 NAME Y

 ENCRYPT N

 OWNER(password) Y1

 RECLAIM N

 PRE(prefix) Y

 BINDABLE Y

 THREAD Y

 EXTERNAL(member) Y

 DLL([flag]) Y

 OEM N
File Structures Supported

 INDEX Y

 KEY Y

 MEMO N

 BLOB Y

 RECORD Y
Index, Key, Memo Attributes Supported

 BINARY N3

 DUP Y

 NOCASE Y

 OPT N

 PRIMARY Y

Database Drivers 230

 NAME Y

 Ascending Components Y

 Descending Components Y

 Mixed Components Y
Field Attributes Supported

 DIM N

 OVER Y

 NAME Y
File Procedures Supported

 BOF(file) N

 BUFFER(file) Y

 BUILD(file) Y

 BUILD(key) Y

 BUILD(index) Y3

 BUILD(index, components) Y3

 BUILD(index, components, filter) N

 BYTES(file) Y

 CLOSE(file) Y

 COPY(file, new file) N

 CREATE(file) Y

 DUPLICATE(file) Y

 DUPLICATE(key) Y

 EMPTY(file) Y

 EOF(file) N

 FLUSH(file) N

 LOCK(file) N

 NAME(label) Y

MSSQL Accelerator 231

 OPEN(file, access mode) Y

 PACK(file) N

 POINTER(file) N

 POINTER(key) N

 POSITION(file) N

 POSITION(key) Y

 RECORDS(file) Y

 RECORDS(key) Y

 REMOVE(file) Y

 RENAME(file, new file) N

 SEND(file, message) Y

 SHARE(file, access mode) Y

 STATUS(file) Y

 STREAM(file) N

 UNLOCK(file) N

Record Access Supported

 ADD(file) Y

 ADD(file, length) N

 APPEND(file) Y

 APPEND(file, length) N

 DELETE(file) Y

 GET(file,key) Y

 GET(file, filepointer) N

 GET(file, filepointer, length) N

 GET(key, keypointer) N

 HOLD(file) N

 NEXT(file) Y

Database Drivers 232

 NOMEMO(file) N

 PREVIOUS(file) Y

 PUT(file) Y

 PUT(file, filepointer) N

 PUT(file, filepointer, length) N

 RELEASE(file) N

 REGET(file,string) N

 REGET(key,string) Y

 RESET(file,string) N

 RESET(key,string) Y

 SET(file) Y

 SET(file, key) N

 SET(file, filepointer) N

 SET(key) Y

 SET(key, key) Y

 SET(key, keypointer) N

 SET(key, key, filepointer) N

 SKIP(file, count) Y

 WATCH(file) Y
Transaction Processing Supported (see Note 2)

 LOGOUT(timeout, file, ..., file) Y4

 COMMIT Y

 ROLLBACK Y
Null Data Processing Supported

 NULL(field) Y

 SETNULL(field) Y

 SETNONNULL(field) Y

MSSQL Accelerator 233

Notes:
1 We recommend using a variable password that is lengthy and contains special

characters because this more effectively hides the password value from anyone looking
for it. For example, a password like "dd....#$...*&" is much more difficult to "find" than a
password like "SALARY."

To specify a variable instead of the actual password in the Owner Name field of the
File Properties dialog, type an exclamation point (!) followed by the variable name.
For example: !MyPassword.

2 See also PROP:Logout in the Language Reference.

3 BUILD(index) sets internal driver flags to guarantee the driver generates the correct
ORDER BY clause. The driver does not call the backend server.

4 Whether LOGOUT also LOCKs the table depends on the server's configuration for
transaction processing. See your server documentation.

Database Drivers 234

MSSQL Accelerator Synchronizer Server
Clarion's Enterprise Edition includes the MSSQL Synchronizer Server and the Data Dictionary
Synchronizer. The Dictionary Synchronizer uses the Synchronizer Server to gather complete
information about an MSSQL database.

The MSSQL Synchronizer Server is one of several used by the Dictionary Synchronizer. All the
common behavior of all the SQL Accelerators is documented in the SQL accelerators section. All
behavior specific to this driver is noted here.

MSSQL Accelerator Synchronizer Login Dialog

Clarion's Dictionary Synchronizer Wizard (Enterprise Edition) lets you import an entire MSSQL
database definition into your Clarion Data Dictionary in a single pass. During this process, the
Synchronizer Wizard opens an MSSQL login dialog. This dialog collects the connection
information for the MSSQL database.

If you are using a Trusted Connection (Integrated NT Security), you must establish
a connection to the NT workstation running the MSSQL Server before you can
connect to the MSSQL database and import table definitions. You can verify your
connection by running the MSSQL ISQL_w Server utility installed with your MSSQL
Client software.

Fill in the following fields in the login dialog:

Host
Select the workstation running the MSSQL database to import
from. If the Host list is empty, you may type in the name. See
your DBA or network administrator for information on how the
host is specified.

Database
Select the MSSQL database that contains the tables or views to
import. If the Database list is empty, you may type in the name.
See your server documentation or your DBA for information on
database names.

Username
For Standard Security, type your MSSQL Username. For Trusted
Security (Integrated NT Security) no Username is required. See
your server documentation or your DBA for information on
applicable Usernames and security methods.

MSSQL Accelerator 235

Password
For Standard Security, type your MSSQL Password. For Trusted
Security (Integrated NT Security) no Password is required. See
your server documentation or your DBA for information on
applicable Passwords and security methods.

Include System Files
Select this option to include system tables in the list of
importable objects.

Exclude System Files
Select this option to exclude system tables from the list of
importable objects.

Other Filter
Select this option to provide a filter expression to limit the list of
tables and views to import. The filter expression queries the
dbo.sysobjects table. The filter expression is limited to 1024
characters in length.

The filter is case sensitive, so type your filter value accordingly.

 Following is a list of the column names (and their Clarion
datatypes) you can reference in your filter expression. Generally,
filtering on MSSQL system tables requires not only an intimate
knowledge of the MSSQL system tables, but also of the MSSQL
stored procedures. For example, to filter on table owner:
uid = user_id('DBO')

 See your SQL server documentation for information on the
MSSQL system tables and stored procedures.

name CSTRING(31)
id LONG
uid SHORT
type STRING(2)
userstat SHORT
sysstat SHORT
indexdel SHORT
schema_ver SHORT
refdate STRING(8)
crdate STRING(8)
version LONG
deltrig LONG
instrig LONG
updtrig LONG

Database Drivers 236

seltrig LONG
category LONG
cache SHORT

MSSQL Accelerator 237

Database Drivers 238

ODBC Accelerator Driver

ODBC:Overview
The ODBC Acclerator Driver is one of several SoftVelocity SQL Accelerator drivers. These SQL
Drivers share a common code base and many common features such as SoftVelocity's unique,
high speed buffering technology, common driver strings, and SQL logging capability. See SQL
Accelerator Drivers for information on these common features.

The ODBC Accelerator Driver converts standard Clarion file I/O statements and function calls into
optimized SQL statements, which it sends to the backend SQL server for processing. This means
you can use the same Clarion code to access both SQL tables and other file systems such as
TopSpeed files. It also means you can use Clarion template generated code with your SQL
databases.

The ODBC Accelerator Driver is slightly different from the other SQL drivers in that it is a generic
SQL driver. It is not specific to a particular SQL server, but, in fact, works with any database or
file system that supports the ODBC standard. This includes SQL systems such as AS400,
Informix, MSSQL, Oracle, Scalable SQL, SQL Anywhere, Sybase, and many non-SQL systems
as well (dBase, Excel, FoxPro, etc.). This chapter describes special issues and considerations
that arise when using the ODBC Accelerator Driver to access data.

All the common behavior of all the SQL Accelerator drivers is documented in the SQL Accelerator
Drivers chapter. All behavior specific to the ODBC driver is noted in this chapter.

You must have Miscrosoft ODBC 2.1 or higher to access 32-bit data sources with
Clarion's Database Manager. Further, if the 32-bit data source is a Microsoft data
source, you must also run Windows NT to access it with Clarion's Database
Manager.

 You can download Miscrosoft ODBC 2.1 from
ftp.sunet.se/ftp/pub/vendor/Microsoft/developr/ODBC/public/ODBC21.exe.

ODBC Accelerator Driver 239

What is ODBC?
ODBC (Open DataBase Connectivity) is a Windows "strategic interface" for accessing data from
a variety of Relational Database Management Systems (RDBMS) across a variety of networks
and platforms.

The ODBC standard was developed and is maintained by Microsoft, which publishes an ODBC
Software Development Kit (SDK), geared for use with its Visual C++ product. ODBC support is
another way in which Clarion provides an extensible platform for you to create applications.

ODBC Pros and Cons

Using ODBC offers the following advantages:

✟ ODBC is an excellent choice in a Client-Server environment, especially if the Server is a
native Structured Query Language (SQL) DBMS. It lets you add Client-Server support to
your application, without having to do much more than choose a file driver. ODBC was
specifically designed to create a non-vendor-specific method of connecting front end
applications to back end services. With ODBC, the Server can handle much of the work,
especially for SQL JOIN and PROJECT operations, thereby speeding up your
application.

✟ Existing ODBC drivers cover a great many types of databases. There are ODBC drivers
available for databases for which Clarion may not have a native driver--for example, for
Microsoft Excel and Lotus Notes files.

✟ ODBC is already widespread. Major application suites such as Microsoft Office install
ODBC drivers for file formats such as dBase and Microsoft Access. Keep in mind that
many ODBC back end drivers have been updated and you should obtain the latest
releases.

✟ ODBC is platform independent. One of Microsoft's prime objectives in establishing ODBC
was to support easier access to legacy systems, or corporate environments where data
resides on diverse platforms or multiple DBMS's. As long as an ODBC driver and back
end are available, it doesn't matter whether you use Microsoft's NetBEUI, SPX/IPX,
DECNet or others; your application can connect to the DBMS and access the data.

Given that there are many drivers available, and that the standard was developed by the
company that developed Windows, you might consider using ODBC as the driver of choice for all
your Windows applications. Yet, when deciding whether to use an ODBC driver or a Clarion
native database driver, you must also consider possible disadvantages:

Database Drivers 240

✟ ODBC adds a layer--the ODBC Driver Manager--between your application and the
database. When accessing files on a local hard drive, this generally results in slower
performance. The driver manager must translate the application's ODBC API call to an
SQL statement before any data access occurs.

 ODBC uses SQL to communicate with the back end database. Although this can be very
efficient when communicating with Client/Server database engines, it is normally less
efficient than direct record access when using a file system designed around single
record access, such as xBase or Btrieve.

✟ The ODBC Administrator manipulates the Windows registry in 32bit and the ODBC.INI in
16bit, adding complexity to systems that run under both 16-bit and 32-bit operation
systems.

✟ The information required by the ODBC database manager to connect to a data source
varies from one ODBC driver to another. Unlike the selection of Clarion file drivers, where
file operations are virtually transparent, you may need to do some work to gather the
information required to use a particular ODBC driver. This chapter provides a few tips
that might make it easier, and many ODBC drivers come with a Help (.HLP) file which
documents special settings usually stored in ODBC.INI (16-bit only); but the burden is on
you to solve any problems with third-party ODBC drivers.

✟ ODBC is not included with Windows. When distributing your application, you'll need to
install the ODBC drivers and the ODBC driver manager into the end user's system. This
requires the ODBC SDK from Microsoft. In some cases, the back end server may have
already provided a distribution kit which installs the ODBC driver on the workstation.

✟ The normal Microsoft setup program that installs the ODBC driver manager adds an
applet to the end user's Control Panel window for managing ODBC. It's very easy for an
end user to use this tool to change the settings in the ODBC.INI file (16-bit only). The end
user can unwittingly remove or modify the settings for the back end ODBC driver which
would make it impossible for your application to connect to the data file.

Given the pros and cons, we recommend using the native Clarion file drivers when both a native
driver and an ODBC driver exist for the same file format.

ODBC Accelerator Driver 241

How ODBC Works

When you use ODBC to access data, four components must cooperate to make it work:

✟ Your application calls the ODBC driver manager, and sends it the appropriate requests
for data, with the ODBC API.

 Clarion does this for you transparently, using the C60ODBX.DLL (32-bit) application
extension. When hand-coding, be sure to include this library in the project. When
distributing your application, be sure to deploy this file with your .EXE file (unless you
produce a one-piece .EXE).

✟ The ODBC driver manager receives the API calls, check the Windows Registry for
information on the data source, then loads the ODBC "back-end" driver.

 The actual "interface" to the driver manager is a file called ODBC32.DLL, which the
Microsoft setup program places in the \Windows\System directory. This is the ODBC
Administrator, which then loads other libraries to do its work.

✟ The ODBC "backend" driver is another library (.DLL) which contains the executable code
for accessing the data.

 Various third-parties supply "backend" drivers. For example, Lotus Development Corp.
supplies the ODBC driver for Lotus Notes. Microsoft Office distributes an ODBC SDK
containing drivers for most of their database products.

✟ The data source is either a data file (usually when ODBC is used for local data access),
or a remote DBMS, such as an Oracle database.

 The data source has a descriptive name; for example, "Microsoft Access Databases."
The name serves as the section name in the ODBC.INI file.

 The ODBC driver manager must know the exact data source name so that it can load the
right driver to access the data. Therefore, it's vitally important that you know the precise
data source name.

Database Drivers 242

ODBC Data Types

Notes
C The Clarion data type can be used to manipulate the ODBC data type. CREATE does

create the ODBC data type.

• The Clarion type can be used to manipulate the ODBC data type, however, CREATE
does NOT create the ODBC data type.

1 Clarion LONG, SHORT, and BYTE can be used with ODBC DECIMAL and NUMERIC
data types if the ODBC field does not have any decimal places.

2 ODBC TIMESTAMP fields can be manipulated using a STRING(8) followed by a GROUP
over it which contains only a DATE field and a TIME field.

ODBC Accelerator Driver 243

Example:
TimeStampField STRING(8),NAME('TimeStampField')
TimeStampGroup GROUP,OVER(TimeStampField)
TimeStampDate DATE
TimeStampTime TIME

END

 CREATE creates a TIMESTAMP field if you use a similar structure.

3 Some loss of precision may occur.

4 Rounding errors may occur.

5 CREATE attempts to create a TINYINT for a BYTE. If the backend does not support
TINYINT, CREATE treats BYTE as a SHORT. CREATE attempts to create a SMALLINT
for a SHORT. If the backend does not support SMALLINT, CREATE treats SHORT as a
LONG. CREATE attempts to create an INTEGER for a LONG. If the backend does not
support INTEGER, CREATE creates a decimal field.

Your backend database may contain data types that are not listed here. These data
types are converted to ODBC data types by the backend database. Consult your
backend database documentation to determine which ODBC data type is used.

Database Drivers 244

Importing from ODBC Data Sources

Clarion's Dictionary Editor Import Wizard lets you import table definitions into your Clarion Data
Dictionary.

When you select the ODBC Accelerator Driver from the driver drop-down list, the Import Wizard
opens the Data Sources dialog. Select an existing Data Source, then press the Next button to
import its definition.

If the data source is not defined, you can add it by pressing the New button, then following the
ODBC instructions provided by the file system you wish to access.

When you have selected a data source, press the Next button to import its definition. This imports
the ODBC table definition and opens the File Properties dialog, allowing you to modify file
attributes, if you choose.

ODBC Accelerator Driver 245

ODBC Connection Information and Driver Configuration--File Properties

Typically, you add SQL support to your application by importing the SQL or ODBC table, view,
and synonym definitions into your Clarion Data Dictionary. The Import Wizard automatically fills in
the File Properties dialog with default values based on the imported item. However, there are
several fields in the File Properties dialog you can use to further configure the way the ODBC
Accelerator Driver accesses the data. These File Properties fields, and their uses are described
below.

Owner Name

Typically, the Import Wizard places the SQL database connection information (Host, Username,
Password, etc.) in the Owner Name field.

Some backend databases may require additional connection information which you can supply in
the Owner Name field. This information follows the password and is separated by semicolons,
using the syntax: keyword=value;keyword=value.

For example, when accessing a Sybase database with the ODBC driver, this would appear as:
DataSource,UserID,PassWord,DATABASE=DataBaseName;APP=APPName

Consult your SQL Server's documentation for information on these keywords, their uses and
effects.

ODBC Key Configuration--Key Properties

Typically, you add SQL support to your application by importing the SQL or ODBC table, view,
and synonym definitions into your Clarion Data Dictionary. The Import Wizard automatically fills in
the Key Properties dialog with default values based on the imported item.

ODBC Column Configuration--Field Properties

Typically, you add SQL support to your application by importing the SQL or ODBC table, view,
and synonym definitions into your Clarion Data Dictionary. The Import Wizard automatically fills in
the Field Properties dialog with default values based on the imported item. However, there are
some fields in the Field Properties dialog you can use to further configure the way the SQL
Accelerator Driver accesses the data. These Field Properties fields are described below.

Database Drivers 246

External Name
| NOWHERE

Adding the NOWHERE switch to the External Name tells the
ODBC driver to exclude the field from any WHERE clauses it
sends to the backend server. This is necessary for certain
backends when WATCH is in effect. Some backends do not
allow certain data types in a where clause, but they fail to advise
the ODBC Accelerator Driver of this restriction. The NOWHERE
switch lets you manually advise of the restriction when WATCH
causes the ODBC driver to generate. Not valid for Oracle driver.

| READONLY
Adding the READONLY switch to the External Name tells the
ODBC driver not to insert the field when the record is added.
This is necessary for certain back ends (such as Watcom) that
do not allow auto incrementing key fields to be set to null. Some
back ends do not allow auto incrementing key fields to be set to
null, but they fail to advise the ODBC Accelerator Driver of this
restriction. The READONLY switch lets you manually advise of
the restriction. Not valid for Oracle driver.

|BINARY
Adding the BINARY switch to the External Name tells the ODBC
driver to store the data in binary format. This is useful when
storing images or non-printable characters. Valid only with
STRING data types, and all SQL drivers (except Oracle).

Note: When adding attributes to the External Name feature,

make sure to separate the fieldname from the appropriate
switch (i.e., fieldname | switch). The spaces separating each
value are required.

ODBC Accelerator Driver 247

Debugging Your ODBC Application

When you use the ODBC Accelerator Driver, the ODBC Administrator can create a log file
documenting all calls made by the ODBC Accelerator Driver. It includes the actual SQL
statements made by the ODBC driver to the data source, and includes any errors posted. This
administrator logging slows down your program considerably, so it should only be activated
during testing. Additionally, the log file can grow to large proportions very quickly, so you should
turn logging off and delete the log file after using it.

Besides "snooping" on the actual SQL statements generated by the driver, you can zero in on
any errors. For example, if the application is unable to connect, you can open the log file, scroll to
the bottom of the file, then work up until you find the word "SQLError."

See Microsoft's ODBC documentation (ODBCINST.HLP--ODBC Options Dialog Box) for
instructions on using the ODBC Administrator logs.

Database Drivers 248

ODBC:Supported Commands and Attributes

File Attributes Supported

 CREATE Y

 DRIVER(filetype [,driver string]) Y

 NAME Y

 ENCRYPT N

 OWNER(password) Y2

 RECLAIM N

 PRE(prefix) Y

 BINDABLE Y

 THREAD Y6

 EXTERNAL(member) Y

 DLL([flag]) Y

 OEM N3
File Structures Supported

 INDEX Y3

 KEY Y3

 MEMO N

 BLOB N

 RECORD Y
Index, Key, Memo Attributes Supported

 BINARY N7

 DUP Y

 NOCASE Y

 OPT N

ODBC Accelerator Driver 249

 PRIMARY Y

 NAME Y

 Ascending Components Y

 Descending Components Y

 Mixed Components Y

Field Attributes Supported

 DIM N

 OVER Y

 NAME Y
File Procedures Supported

 BOF(file) N

 BUFFER(file) Y

 BUILD(file) Y

 BUILD(key) Y

 BUILD(index) Y8

 BUILD(index, components) Y8

 BUILD(index, components, filter) N

 BYTES(file) Y

 CLOSE(file) Y

 COPY(file, new file) N

 CREATE(file) Y

 DUPLICATE(file) Y

 DUPLICATE(key) Y

 EMPTY(file) Y

 EOF(file) N

 FLUSH(file) N

Database Drivers 250

 LOCK(file) N

 NAME(label) Y

 OPEN(file, access mode) Y

 PACK(file) N

 POINTER(file) N

 POINTER(key) N

 POSITION(file) N

 POSITION(key) Y

 RECORDS(file) Y

 RECORDS(key) Y

 REMOVE(file) Y

 RENAME(file, new file) N

 SEND(file, message) Y

 SHARE(file, access mode) Y

 STATUS(file) Y

 STREAM(file) N

 UNLOCK(file) N

Record Access Supported

 ADD(file) Y

 ADD(file, length) N

 APPEND(file) Y

 APPEND(file, length) N

 DELETE(file) Y

 GET(file,key) Y

 GET(file, filepointer) N

 GET(file, filepointer, length) N

 GET(key, keypointer) N

ODBC Accelerator Driver 251

 HOLD(file) N

 NEXT(file) Y

 NOMEMO(file) N

 PREVIOUS(file) Y4

 PUT(file) Y

 PUT(file, filepointer) N

 PUT(file, filepointer, length) N

 RELEASE(file) N

 REGET(file,string) N

 REGET(key,string) Y

 RESET(file,string) N

 RESET(key,string) Y

 SET(file) Y4

 SET(file, key) N

 SET(file, filepointer) N

 SET(key) Y

 SET(key, key) Y

 SET(key, keypointer) N

 SET(key, key, filepointer) N

 SKIP(file, count) Y

 WATCH(file) Y
Transaction Processing Supported (see Note 5)

 LOGOUT(timeout, file, ..., file) Y8

 COMMIT Y

 ROLLBACK Y
Null Data Processing Supported

 NULL(field) Y

Database Drivers 252

 SETNULL(field) Y

 SETNONNULL(field) Y

Notes:
1 The Clarion ODBC file driver supports the listed items, however, the underlying file

system may not support all of these items.

2 We recommend using a variable password that is lengthy and contains special
characters because this more effectively hides the password value from anyone looking
for it. For example, a password like "dd....#$...*&" is much more difficult to "find" than a
password like "SALARY."

To specify a variable instead of the actual password in the Owner Name field of the
File Properties dialog, type an exclamation point (!) followed by the variable name.
For example: !MyPassword.

3 International sorting is assumed to be done by the underlying file system. As such the
OEM attribute and the .ENV file are ignored.

4 PREVIOUS is not supported in file order.

5 See also PROP:Logout in the Language Reference.

6 THREADed files do not consume additional file handles for each thread that accesses
the file.

7 BUILD(index) sets internal driver flags to guarantee the driver generates the correct
ORDER BY clause. The driver does not call the backend server.

8 Whether LOGOUT also LOCKs the table depends on the server's configuration for
transaction processing. See your server documentation..

ODBC Accelerator Driver 253

ODBC:Driver Strings
There are switches or "driver strings" you can set to control the way your application creates,
reads, and writes files with a specific driver. Driver strings are simply messages or parameters
that are sent to the file driver at run-time to control its behavior. See Common Driver Features--
Driver Strings for an overview of these runtime Database Driver switches and parameters.

A forward slash preceeds all SQL driver strings. The slash allows the driver to
distinguish between driver strings and SQL statements sent with the SEND
function.

There are no Driver Strings specific to ODBC, the ODBC Accelerator Driver supports all the SQL
Accelerator Driver Strings. See SQL Accelerator Driver Strings .

Database Drivers 254

ODBC:Driver Properties

There are no driver properties specific to ODBC, the ODBC Accelerator Driver supports all the
SQL Accelerator Driver properties. See SQL Accelerator Driver Properties .

Microsoft Access and ODBC

ODBC Driver that ships with Access 2.0

The ODBC driver that ships with Access 2.0 only works with other Microsoft Office applets. To get
a general purpose driver that works with the Clarion ODCB Accelerator Driver, you need to
purchase the ODBC Desktop Driver Kit 2.0 from Microsoft.

Oracle Accelerator 255

Database Drivers 256

Oracle Accelerator

Overview

Oracle Server

For complete information on the Oracle database system, please refer to your Oracle
documentation.

Oracle Accelerator

Oracle Accelerator is one of several SoftVelocity SQL Accelerators. These SQL drivers share a
common code base and many common features such as SoftVelocity's unique, high speed
buffering technology, common driver strings, and SQL logging capability. See SQL Accelerators
for information on these common features.

The Oracle Accelerator converts standard Clarion file I/O statements and function calls into
optimized SQL statements, which it sends to the backend Oracle server for processing. This
means you can use the same Clarion code to access both Oracle tables and other file systems
such as TopSpeed files. It also means you can use Clarion template generated code with your
SQL databases.

All the common behavior of all the SQL Accelerators is documented in the SQL Accelerators
section. All behavior specific to this driver is noted here.

SoftVelocity's Oracle Accelerator automatically works with Oracle versions 7.0 8i. At runtime, the
driver initially tries to load the Oracle 8i DLLs. If the 8i DLLs are not available, it tries the 8.05
DLLs, 8.04 DLLs, 8.03 DLLs, 7.3 DLLs, and so on. See Future Oracle Releases for more
information.

Note: Personal Oracle 8.0 only works with 32-bit programs.

Oracle Accelerator 257

Oracle Accelerator System Requirements

Hardware

You can run the Clarion development environment on any system that meets the minimum
system requirements for Microsoft Windows 3.x, Windows 95 , or Windows NT 3.51.

Software

To develop Windows programs with Oracle Accelerator, you must have Oracle version 7.0 or
higher; that is, you must have a licensed copy of Oracle's ORAxWIN.DLL (where x is the Oracle
version number), plus any other DLLs it requires--typically Oracle's USDMEM.DLL and
COREWIN.DLL. These .DLLs must be in a directory that is in your system PATH.

In addition, to run your 32-bit programs with Oracle, you must have Oracle version 7.2 or higher;
that is, you must have a licensed copy of Oracle's ORA72.DLL or higher. This DLL must also be
in a directory that is in your system PATH.

Oracle 7.2 and higher (32-bit) does not automatically install all the .DLLs required
by Clarion; you must specify Required Support Files for Windows (16-bit) in
addition to the standard installation files. To do so, run SETUP.EXE from the
WINDOWS directory on the Oracle CD.

You will not be able to define or import Oracle files in your Clarion data dictionary
until the Oracle DLLs are installed in a directory that is in your system PATH.

Installing Oracle's Required Support Files

Oracle 7.2 and higher does not automatically install all the .DLLs required for Clarion with its
standard install; you must install the Windows (16-bit) Required Support Files for your version of
Oracle in addition to the standard installation files. You should follow Oracle's installation
instructions for installing Required Support Files. We have found the following steps work best for
Oracle 7.3:

1. Run SETUP.EXE from the WINDOWS directory on the Oracle CD.

2. Choose an install directory other than the primary Oracle directory.

3. Install the support files corresponding to your Oracle version only.

Database Drivers 258

Oracle Accelerator Installation
To install the Oracle Accelerator file driver:

1. Install the required Oracle components.

 See System Requirements--Software.

2. Run A:SETUP where A: is the drive letter of the drive containing the Oracle Accelerator
install disk.

 Follow the instructions on your screen. Install Oracle Accelerator to the directory that
already contains Clarion.

 The setup program installs Oracle Accelerator according to your selections. When
everything is installed, the setup program offers to open the Oracle Accelerator on-line
help file. This file contains late breaking information about the Oracle Accelerator file
driver.

3. Please read the late breaking information.

 When you have finished reading, close the file.

4. Register the Oracle Accelerator driver with the Clarion development environment.

Oracle Accelerator 259

Registering the Oracle Accelerator
You must register the Oracle Accelerator driver with the Clarion development environment before
you can use it.

To register Oracle Accelerator:

1. Start the Clarion development environment.

2. Choose Setup Database Driver Registry.

3. Press the Add button.

4. Highlight C60ORA.DLL (by default, in the ..\BIN directory) in the list box, then press the
OK button.

 This registers the Oracle Accelerator driver.

5. Press the OK button.

Database Drivers 260

Oracle Accelerator Table Import Wizard--Login Dialog
Clarion's Dictionary Editor Import Wizard lets you import Oracle table definitions into your Clarion
Data Dictionary. When you select the Oracle Accelerator from the driver drop-down list, the
Import Wizard opens the Login/Connection dialog. The Login/Connection dialog collects the
connection information for the Oracle database.

IMPORTANT NOTES:

Before you can connect to the SQL database and import table definitions, the
database must be started and must be accessible from your computer.

Only those indexes directly associated with the table as CONSTRAINTs are
imported by the Oracle Accelerator driver. If you need more indexes, simply define
them manually.

If the Oracle database INDEX flag is set to OFF, the Oracle Accelerator Import
Wizard does not import CONSTRAINTS.

Fill in the following fields in the Login/Connection dialog:

Host
Select the Oracle host that contains the tables or views to import.
If the Host list is empty, you may type in the host (a blank host
specifies the Oracle 8 Personal database). See your DBA or
network administrator for information on how the host is
specified. For example, type 2: to connect to the local Personal
Oracle (7.2 and earlier) database. X: prefixes an IPX host and
TNS: prefixes a TCP/IP host.

Note: For Personal Oracle 8, leave the Host field blank.

Username
Type your Oracle Username. See your server documentation or
your DBA for information on applicable Usernames.

Password
Type your Oracle Password. See your server documentation or
your DBA for information on applicable Passwords.

 Optionally, you type a complete connect string in the Username
field using either of the following syntaxes:
username/password@Protocol:dbname

 or
username@Protocol:dbname,password

Oracle Accelerator 261

 For example type:
scott/tiger@2:production1

 in the Username field. Or you may type just your username and
the database name in the Username field, and type your
password in the Password field. For example type:
scott@2:production1

 in the Username field, then type
tiger

 in the Password field. The Import Wizard displays the password
as a series of asterisks. See your Oracle documentation for more
information on Oracle connect string syntax.

Filter
Optionally, provide a filter expression to limit the list of tables and
views to import. The filter expression queries the
ALL_CATALOG view. For example the filter: OWNER='SCOTT'
returns only the tables which have SCOTT as the OWNER. . The
filter expression is limited to 1024 characters in length.

Tip: The filter is case sensitive, so type your filter value accordingly.

 Following is a list of the ALL_CATALOG column names (and
their Clarion datatypes) you can reference in your filter
expression. See your Oracle documentation for more in
formation on these columns.

 OWNER CSTRING(31)
TABLE_NAME CSTRING(31)
TABLE_TYPE CSTRING(12)

Next >
Press this button to open the Import Wizard's Import List dialog.

Database Drivers 262

Oracle Accelerator Table Import Wizard--Import List Dialog
When you press the Next > button, the Import Wizard opens the Import List dialog. The Import
List dialog lists the importable items.

Highlight the table, view, or synonym whose definition you wish to import, then press the Finish
button to import. The Import Wizard adds the definition to your Clarion Data Dictionary, then
opens the File Properties dialog to let you modify the imported definition.

Import additional tables by repeating these steps. After all the items are imported, return to the
Dictionary Editor where you can define relationships and delete any columns not used in your
Clarion application. See SQL Accelerators--Define Only the Fields You Use.

Tip: You can use the Enterprise Edition Dictionary Synchronizer to import an entire
database, including relationships, in a single pass.

Oracle Accelerator Performance Considerations
See SQL Accelerators--Performance Considerations for more information on performances
issues common to all SQL Accelerators, including Oracle Accelerator.

Oracle Accelerator 263

Oracle Accelerator Automatic Login Dialog
The Oracle Accelerator Login dialog lets the user specify Username, Password and Database.

In the Database drop-down list, select from previously selected Oracle hosts. The list of
previously entered databases as well as the last UserID is stored in the Windows registry in the
HKEY_CURRENT_USER/Software/SoftVelocity/Oracle tree as follows:
/Software/SoftVelocity/Oracle/UserID the last UserID
/Software/SoftVelocity/Oracle/HostMRU the last selected database
/Software/SoftVelocity/Oracle/HostCount number of databases in the list
/Software/SoftVelocity/Oracle/Host1 database name
/Software/SoftVelocity/Oracle/Host2 database name
/Software/SoftVelocity/Oracle/Hostn database name

If the Database list is empty, you may simply type in the database name. For example, type 2: to
connect to the local Personal database. The 2: indicates a local host; X: indicates an IPX host
and TNS: indicates a TCP/IP host.

Alternatively, you may also supply a connect string (containing the database name) in the
Username field. The Oracle connect string syntax is:
username/password@Protocol:dbname

or
username@Protocol:dbname,password

See your Oracle documentation for more information on Oracle connect string syntax.

If the Username field is not long enough, you may continue the entry in the Password field,
because the Oracle Accelerator driver simply concatenates these fields and forwards their
contents to the Oracle server.

Database Drivers 264

Oracle Accelerator Generating Unique Key Values
For many database applications, you will want to automatically generate unique key values for
your database records. An Oracle Sequence is simply a sequence number generator. You can
select the next number from the Sequence whenever you add a new record.

Generally, we recommend using Oracle Sequences whenever possible to generate your unique
key values. Sequences are more efficient because you never get a clash, and you need only two
(2) database calls to add your new record.

Oracle Sequences

To use Oracle Sequences...

1. Define an Oracle Sequence for the auto incremented key.

 See your Oracle documentation:
CREATE SEQUENCE CustomerSequence
INCREMENT BY 1
START WITH 1
NOMAXVALUE
MINVALUE 1
NOCYCLE
CACHE 30;

2. Declare a Clarion file to receive the sequence number from the Oracle Sequence like
this:

CustomerSequence FILE,DRIVER('ORACLE'),PRE(CUST),CREATE,THREAD
Record RECORD,PRE()
SequenceNo LONG

END
END

3. Assign the incremented sequence number to your key field by embedding the following in
the WindowManager Method Executable Code Section - PrimeFields embed point:

Access:CustomerSequence.Open
CustomerSequence{Prop:SQL}='Select CustomerSequence.Nextval from dua
IF ~Access:CustomerSequence.Next()
Cust:CustNo=SequenceNo
END

 where Cust:CustNo is the label of your auto-incremented key field in your Oracle data
file.

4. Set the embedded code priority to 7500.

Oracle Accelerator 265

Oracle Accelerator Driver Strings
There are switches or "driver strings" you can set to control the way your application creates,
reads, and writes files with a specific driver. Driver strings are simply messages or parameters
that are sent to the file driver at run-time to control its behavior. See SQL Accelerators in the
Programmer’s Guide for more information on SQL driver strings.

In addition to the common SQL Accelerator driver strings, Oracle Accelerator supports the
following driver strings as well.

Database Drivers 266

HINT
You can tell Oracle Accelerator to generate Oracle hints by using the HINT driver string,
DRIVER ('Oracle','/HINT=hint')

by using /HINT in the key name,
Key KEY(fieldlist),NAME('name /HINT=[&]hint')

with SEND,
SendReturn = SEND (file,' /HINT=[&]hint')

or with the PROP:Hint property,
file{PROP:Hint} = '[&]hint'
HintString = file{PROP:Hint}

The square brackets [] above are used to show that the ampersand (&) is optional.

You can either override the base hint or concatenate a hint. If the first character after the = in the
KEY hint is an ampersand (&), Oracle Accelerator concatenates the hint onto the FILE hint,
otherwise it overrides the FILE hint.

If the first character after the = in the SEND hint is an ampersand (&) or the first character of a
hint property is an ampersand, Oracle Accelerator concatenates the hint onto the current hint (the
FILE hint and the KEY hint), otherwise it overrides the FILE and KEY hint.

You can also use PROP:Hint to return the hint that is in use (or will be in use if called after a SET,
but before the first NEXT or PREVIOUS statement.)

Example:
AFile DRIVER('Oracle','/hint=COST')
AKey KEY(field),NAME('KeyName /HINT=&FIRST_ROWS')
SEND(AFile,'/HINT=FIRST_ROWS')
AFile{PROP:Hint} = 'FIRST ROWS'

Oracle Accelerator 267

LOGON SCREEN

DRIVER('Oracle', '/LOGONSCREEN = TRUE | FALSE ')

LOGONSCREEN sets the toggle that determines whether the driver automatically prompts for
logon information. By default, the driver displays a logon window if no connect string is supplied.
If set to FALSE and there is no connect string, an ERRORCODE of 90 is returned.

The logon screen elements are contained within the file driver logic.

The end-user's ability to use the connect dialog will depend on the security surrounding the
Oracle database.

PERSONAL
The Personal Oracle 7.1 Server behaves differently than other Oracle servers. When using
Personal Oracle 7.1 you should inform Oracle Accelerator so it can tailor the generated SQL
especially for Personal Oracle 7.1. For example:
DRIVER ('Oracle','/PERSONAL')

or
SEND (Myfile,'/PERSONAL')

Note: The /PERSONAL switch is not required for Personal Oracle 7.2 (Personal Oracle for
Windows 95).

Note: Personal Oracle 8.0 only works with 32-bit programs.

Database Drivers 268

USEASYNCHRONOUSCALLS
The Oracle driver supports reading ahead asynchronously using the BUFFER statement. This
may give performance gains when using this variation of the BUFFER statement. For example,
you may have a large report where you need to read a lot of records and do some client side
processing. It would improve performance to use the BUFFER's read ahead facility to get data
in at the same time you are processing it. However, to enable this feature, all other commands
will run slower (become asynchronous).
By default the asynchronous read ahead feature of the BUFFER statement is disabled. To
enable this feature set /USEASYNCHRONOUSCALLS=TRUE

Oracle Accelerator 269

WHERE
In addition to WHERE driver string supported by all the SQL Accelerator drivers, Oracle
Accelerator supports the following special WHERE driver string.

/Where in the FILE Definition

When a FILE declaration references more than one Oracle table, you must tell the Oracle server
which columns link the tables together. A /WHERE in the FILE definition specifies the connecting
fields between two or more Oracle tables. For example:
OrdBrowse FILE,DRIVER('ORACLE','/WHERE Orders.AccNum=Customer.AccNum'),|

NAME('Orders,Customer'),PRE(Orb),BINDABLE,THREAD
OrdbKey KEY(-Orb:OrderNumber),NAME('OrdbKey'),PRIMARY
Record RECORD,PRE()
OrderNumber LONG,NAME('OrderNum')
AccountNumber LONG,NAME('Orders.AccNum')
ShipTo STRING(32),NAME('ShipTo')
Name STRING(31),NAME('Name')

END
END

Note: If you use the templates to generate your application, you will not need this
technique. The templates automatically generate VIEWs when more than one table
is referenced.

Database Drivers 270

Oracle Accelerator Driver Properties
You can use Clarion's property syntax to query and set certain Oracle Accelerator driver
properties. See SQL Accelerators--SQL Accelerator Properties.

Oracle Accelerator--Using Embedded SQL
You can use Clarion's property syntax (PROP:SQL) to send SQL and PL/SQL statements to the
Oracle server within the normal execution of your program. For backward compatibility, you can
also use SEND to send SQL and PL/SQL statements; however, we recommend using the
property syntax.

See SQL Accelerators in the Programmer’s Guide for more information on using
embedded SQL.

Oracle Accelerator 271

PL/SQL
PL/SQL is Oracle's procedural language extension to Oracle's SQL language. Because PL/SQL
statements are managed by the same engine that manages SQL statements, PL/SQL statements
may be incorporated into your Clarion programs in the same manner as SQL statements. For
example:
SQLFile FILE,DRIVER('Oracle'),NAME(SalaryFile)
Record RECORD
SalaryAmount PDECIMAL(5,2),NAME('JOB')

END
END

CODE
SqlFile{PROP:SQL} = |
'DECLARE ' &|

'TempPhoneArea clarionclient.PhoneArea%type; ' &|
'CURSOR AreaCursor IS ' &|

'SELECT PhoneArea ' &|
'FROM ClarionClient ' &|
'WHERE PhoneArea = 305; ' &|

'BEGIN ' &|
'OPEN AreaCursor; ' &|
'LOOP ' &|
'FETCH AreaCursor INTO TempPhoneArea; ' &|
'EXIT WHEN AreaCursor%NOTFOUND; ' &|
'UPDATE ClarionClient ' &|

'SET PhoneArea = 954; ' &|
'END LOOP; ' &|
'CLOSE AreaCursor; ' &|
'COMMIT WORK; ' &|

'END;'

Database Drivers 272

Calling a Stored Procedure:Oracle Accelerator

NORESULTCALL

For Oracle Accelerator, NORESULTCALL is required for stored procedures that do not return a
result set. For example:
file{PROP:SQL} = 'NORESULTCALL GrantAccessProcedure'

DLL Coding Practices
Clarion applications that make use of DLLs must avoid calling certain file functions for Oracle
tables in the constructors of static instances of classes declared in the EXE or DLLs, with the
following exceptions:

- NAME(File)
- SEND(File, String)
- File{PROP:xxx} (get and set)
- Key{PROP:xxx} (get and set)

This is complete list. Any attempt to call any other file function in the constructors of static
instances of classes can cause an "Oracle could not be found" error on attempt to load the Oracle
client-side DLL.

ABC templates generate an instance of the DLLInitializer class for every DLL and provide embed
points to enter custom code in the constructor. The constructor for the "data" DLL indirectly calls
Init methods for every generated instance of the FileManager class. This method makes calls to
the file functions from the list given above. Code entered in the provided embed points or added
by 3rd party templates should not use calls to other file functions from DLLInitializer.Construct.

Oracle Accelerator 273

Oracle Accelerator Supported Commands and Attributes

File Attributes Supported

 CREATE Y1

 DRIVER(filetype [,driver string]) Y

 NAME Y

 ENCRYPT N

 OWNER(password) Y

 RECLAIM N

 PRE(prefix) Y

 BINDABLE Y

 THREAD Y

 EXTERNAL(member) Y

 DLL([flag]) Y

 OEM Y2
File Structures Supported

 INDEX Y

 KEY Y

 MEMO N

 BLOB Y

 RECORD Y
Index, Key, Memo Attributes Supported

 BINARY N

 DUP Y

 NOCASE Y

 OPT Y

 PRIMARY Y

Database Drivers 274

 NAME Y

 Ascending Components Y

 Descending Components Y

 Mixed Components Y
Field Attributes Supported

 DIM N

 OVER Y

 NAME Y
File Procedures Supported

 BOF(file) N

 BUFFER(file) Y

 BUILD(file) Y

 BUILD(key) Y

 BUILD(index) Y3

 BUILD(index, components) Y3

 BUILD(index, components, filter) N

 BYTES(file) Y10

 CLOSE(file) Y

 COPY(file, new file) N

 CREATE(file) Y1

 DUPLICATE(file) Y

 DUPLICATE(key) Y

 EMPTY(file) Y

 EOF(file) N

 FLUSH(file) N

 LOCK(file) N

 NAME(label) Y

Oracle Accelerator 275

 OPEN(file, access mode) Y

 PACK(file) N

 POINTER(file) N

 POINTER(key) N

 POSITION(file) Y13

 POSITION(key) Y11

 RECORDS(file) Y

 RECORDS(key) Y12

 REMOVE(file) Y

 RENAME(file, new file) N

 SEND(file, message) Y

 SHARE(file, access mode) Y

 STATUS(file) Y

 STREAM(file) N

 UNLOCK(file) N
Record Access Supported

 ADD(file) Y

 ADD(file, length) N

 APPEND(file) Y4

 APPEND(file, length) N

 DELETE(file) Y

 GET(file,key) Y

 GET(file, filepointer) Y5

 GET(file, filepointer, length) N

 GET(key, keypointer) N

 HOLD(file) Y6

 NEXT(file) Y

Database Drivers 276

 NOMEMO(file) N

 PREVIOUS(file) Y7

 PUT(file) Y

 PUT(file, filepointer) N

 PUT(file, filepointer, length) N

 RELEASE(file) N

 REGET(file,string) Y8

 REGET(key,string) Y8

 RESET(file,string) N

 RESET(key,string) Y9

 SET(file) Y

 SET(file, key) N

 SET(file, filepointer) N

 SET(key) Y

 SET(key, key) Y

 SET(key, keypointer) N

 SET(key, key, keypointer) N

 SKIP(file, count) Y

 WATCH(file) Y
Transaction Processing Supported

 LOGOUT(timeout, file, ..., file) Y

 COMMIT Y

 ROLLBACK Y
Null Data Processing Supported

 NULL(field) Y

 SETNULL(field) Y13

 SETNONNULL(field) Y

Oracle Accelerator 277

Notes:
1 CREATE(file) does not work for every data type. See Supported Data Types for more

information.

2 Adding the OEM attribute causes the driver to generate calls to NLSSORT for string
fields in a sort sequence (either key components or PROP:Order components).

3 The BUILD(dynamic index) and BUILD(index) statements do not perform any disk action.
They only initialize internal Oracle driver structures to track key order access and allow
SELECT statements to be built when you issue SET(key) or SET(key,key) statements
referencing the index.

4 The APPEND statement behaves identically to the ADD statement, that is, keys are
updated by the APPEND statement.

5 The GET(file, filepointer) statement is unsupported for all values of filepointer except
filepointer = 0. In this case, the record position is cleared and ERRORCODE 35 is
returned.

6 Apart from the holding records, the HOLD statement has another use. Normally, the
driver will not reread the record when you execute a RESET/NEXT to the current record.
Executing a HOLD statement before the RESET/NEXT forces the driver to reread the
record from disk.

7 You can't execute a PREVIOUS after a SET(file) statement. You can only examine the
file in a forward order.

8 The REGET statement only works if you have a unique key defined for the file

9 The RESET(key,position)/NEXT(file) statement sequence is optimized to retrieve the
record from the driver's internal buffer if the code is resetting to the current record. To
force the driver to reread the record from disk, execute a HOLD statement before the
RESET/NEXT sequence. This optimization is not in effect within a transaction frame.

10 The BYTES(file) function returns the number of records in the file or the number of bytes
in the last record accessed. Following an OPEN statement, the BYTES function returns
the number of records in the file. After the file has been accessed by GET, NEXT, ADD,
or PUT, the BYTES function returns the size of the last record accessed.

11 The POSITION(key) function returns (1 + size of the key components + the size of the
components of the file's primary key). This formula is true even if the first unique key is
the same key you are positioning on. If no primary key is defined, then the first unique
key is considered the primary key.

 If there is no unique key, POSITION(key) returns 1 + size of the key components. In this
case RESET(key) will reposition to the first occurrence of the key value, since there is no
way of uniquely identifying a record. Therefore, the RESET may position on a different
record.

Database Drivers 278

12 The RECORDS(key) function returns the number of UNIQUE occurrences of the first
element of the key. This is the same as doing an SQL statement of:
SELECT COUNT (DISTINCT key_field1) FROM table

13 SETNULL(field) clears the contents of the field.

14 The returned POSITION can only be used with REGET(file,position) and only for unique
keys.

Oracle Accelerator 279

Oracle Accelerator Data Types
The following table matches Clarion data types to their corresponding Oracle data types.

Tip: Generally, you should not have to do any manual matching of data types. Rather,
you simply import file definitions from your Oracle database into your Clarion data
dictionary. The Oracle Accelerator driver automatically selects the proper data
types (see Importing Oracle Files to a Data Dictionary).

Oracle data type Clarion data type

CHAR STRING

VARCHAR2 CSTRING

NUMBER REAL

NUMBER(n,p) PDECIMAL

NUMBER(n,0) BYTE1,SHORT2,USHORT3,LONG4

LONG STRING+GROUP+SHORT5

LONG RAW STRING+GROUP+SHORT5

DATE DATE or STRING+DATE+TIME6

RAW STRING

ROWID STRING(18)7

Data Type Notes:

1 CREATE will create a NUMBER(3,0).

2 CREATE will create a NUMBER(5,0).

3 CREATE will create a NUMBER(5,0).

4 CREATE will create a NUMBER(10,0).

5 Clarion can access Oracle LONG and LONG RAW data types by using a STRING and a
GROUP overlaying the STRING. The GROUP consists of a SHORT and a STRING. The
SHORT holding the length of the total data (including the length of the SHORT). For
example:

Comments STRING(1024),NAME('COMMENTS') !Oracle LONG field
COMMENTS_GROUP GROUP,OVER(Comments)
COMMENTS_LENGTH USHORT
COMMENTS_DATA STRING(1022)

END

Database Drivers 280

 You cannot use the CREATE statement to create rows of type LONG or LONG RAW.

6 Clarion can access Oracle DATE data types by using either a DATE or a STRING with a
GROUP overlaying the STRING.

 If you use a Clarion DATE field, the TIME component of the field is not readable and is
set to 0 when writing the field. You may use a CREATE statement to create the table. For
example:

StartDate DATE,NAME('START_DATE') !Oracle DATE field

 If you use a Clarion STRING with an overlaid GROUP, the GROUP consists of a DATE
and a TIME field. You may not use a CREATE statement to create the table. For
example:

OraDate STRING(8),NAME('START_DATE') !Oracle DATE field
StartDate_Group GROUP,OVER(OraDate)
StartDate DATE
StartTime TIME

END

Tip: Your Clarion application should generally reference the DATE field (StartDate), and
should not reference the STRING field (OraDate) or the GROUP field
(StartDate_Group).

 However, if the Oracle date stamp is part of the key, you must include the STRING
field (not the DATE field) as a key component in your Clarion data dictionary.

7 Oracle ROWID data types are read and written as a STRING(18) of format
BBBBBBBB.RRRR.FFFF. Where B, R, and F are hexadecimal numbers representing
block, row, and file number respectively. See your Oracle documentation for more
information.

 CREATE will not create a ROWID row.

Oracle Accelerator 281

Oracle Accelerator Troubleshooting

Clarion Won't Accept Oracle File Driver

Clarion's Dictionary Editor allows you to select the Oracle file driver only if Oracle is installed on
your machine. That is, the Oracle DLLs must be installed in a directory in your path before
Clarion's Dictionary Editor will recognize the Oracle driver. Attempting to run the Oracle example
program will produce error windows that tell you which DLLs are missing.

Oracle Not Available (-1034)

If you receive this error (Oracle error number -1034), make sure the Oracle server is properly
installed and is available to the client.

Unable to allocate memory on user side (-1019)

This message may indicate some of the required Oracle DLLs are not installed to a directory in
your system path. See System Requirements--Software.

Unable to spawn new ORACLE (-9352)

This message may indicate the Oracle database is not started. Start the Oracle database and
retry.

Could Not Log On:Oracle Accelerator

This message may indicate an invalid username, password, or servername. It may also indicate
that the Oracle server is not installed or is otherwise not available. Make sure the Oracle server is
properly installed and is available to the client.

Invalid Field Type Descriptor: Oracle Accelerator

The Clarion error: Invalid Field Type Descriptor is generated at runtime if you supply a field name
in the field's NAME attribute that does not match any field name in the Oracle table. By turning
logging on (see /LOGFILE) you can re-run your program and receive a list of valid field names in
the log file. Use the dictionary import facility to import the field descriptions into your Clarion data
dictionary to avoid this problem.

Database Drivers 282

Unexpected End of SQL Command (-921)

If you receive this error (Oracle error number -921), make sure that the SQL Select statement
selects the same number of columns as the receiving Clarion FILE structure declares.

This error may also occur when a CREATE statement generates incorrect SQL statements when
the last field is OVER a previous field. Change the file layout so the last field declared is not
declared OVER a previous field.

File Not Found:Oracle Accelerator

If you receive this error (or Oracle error number 942--Table or View Does Not Exist), check that
the file name you are passing to the Oracle driver is valid. The most common occurrence of this
error is when the name of the Oracle table is not correct. If the table is owned by another user,
you must explicitly identify the owner as follows:
owner.table

Error 47:Oracle Accelerator

An Error 47 indicates there is a field defined in your Clarion data dictionary that does not exist on
the Oracle server. To identify the field, use /LOGFILE.

Internal Error 02: WSLDIAL:Oracle Accelerator

Use the Project Editor dialog to add the ..\LIBSRC\ORALOON.RSC file to your application's
Library, object and resource files.

To add resource files to your project:

1. From the Application Tree dialog, press the Project button.

2. Highlight Library, object and resource files, then CLICK on the Add File button.

3. Navigate to the ..\LIBSRC folder, then select the resource file (ORALOON.RSC) from the
Windows File dialog.

4. Press the OK button to return to the Project Editor dialog.

No Interface Driver Connected(-03121)

This indicates you have not entered a correct database name. Be sure to enter the correct
database name in the Host or Database field.

Oracle Accelerator 283

Database Drivers 284

Scalable SQL Accelerator 285

Scalable SQL Accelerator Driver

Scalable SQL Overview

The Scalable SQL Server

For complete information on the Scalable SQL database system, please review Pervasive
Software's documentation.

Scalable SQL requires that the 16-bit ODBC support files are also installed.

The Scalable SQL Driver

The Scalable SQL Driver is one of several SoftVelocity SQL Accelerator drivers. These SQL
Drivers share a common code base and many common features such as SoftVelocity's unique,
high speed buffering technology, common driver strings, and SQL logging capability. See SQL
Accelerator Drivers for information on these common features.

The Scalable SQL Driver converts standard Clarion file I/O statements and function calls into
optimized SQL statements, which it sends to the backend Scalable SQL server for processing.
This means you can use the same Clarion code to access both Scalable SQL tables and other
file systems such as TopSpeed files. It also means you can use Clarion template generated code
with your SQL databases.

All the common behavior of all the SQL Accelerator drivers is documented in the SQL Drivers
section. All behavior specific to the Scalable SQL driver is noted in this chapter.

Scalable SQL Import Wizard--Login Dialog

Clarion's Dictionary Editor Import Wizard lets you import Scalable SQL table definitions into your
Clarion Data Dictionary. When you select the Scalable SQL Accelerator Driver from the driver
drop-down list, the Import Wizard opens the Login/Connection dialog. The Login/Connection
dialog collects the connection information for the Scalable SQL database.

Before you can connect to the SQL database and import table definitions, the
database must be started and must be accessible from your computer.

Database Drivers 286

Fill in the following fields in the Login/Connection dialog:

Database Name
Select the Scalable SQL database that contains the tables to
import. If the Database Name list is empty, you may type in the
name.

 See your server documentation for information on how the
database is specified. The specification may depend on where
the database server is located (remote or local), and on the
network protocol (TCP/IP, IPX, etc.) used to access it.

DDF Directory
Press the Browse button to select the pathname or directory
containing the database DDF files.

Database Directory
Press the Browse button to select the pathname or directory
containing the database.

Specify either the Database Name or the DDF directory, but not both.

Owner Names
Optionally, type a comma separated list of names the Scalable
SQL driver tries when opening encrypted Btrieve files. If a name
contains a comma or space, it must be surrounded by single
quotes.

Refresh table list
Check this box to refresh the list of tables to import when you
press the Next > button. Clear the box to improve performance
when the database is likely to be unchanged between imports.

Disconnect after Import or Cancel
Check this box to disconnect from the server after importing the
(last) definition. Generally, you should clear this box when
importing multiple definitions in order to maintain your connection
to the server between imports.

Next >
Press this button to open the Import Wizard's Import List dialog.

Scalable SQL Accelerator 287

Scalable SQL Import Wizard--Import List Dialog

When you press the Next > button, the Import Wizard opens the Import List dialog. The Import
List dialog lists the importable items.

Highlight the table whose definition to import, then press the Finish button to import. The Import
Wizard adds the definition to your Clarion Data Dictionary, then opens the File Properties dialog
to let you modify the default definition.

Import additional tables by repeating these steps. After all the items are imported, return to the
Dictionary Editor where you can define relationships and delete any columns not used in your
Clarion application. See SQL Accelerator Drivers--Define Only the Fields You Use.

Scalable SQL Connection Information and Driver Configuration--File
Properties

Typically, you add Scalable SQL support to your application by importing the table definitions into
your Clarion Data Dictionary. The Import Wizard automatically fills in the File Properties dialog
with default values based on the imported item. However, you can use the Owner Name field in
the File Properties dialog to further configure the way the Scalable SQL Driver accesses the data.

Scalable SQL allows some information in addition to the database identification in the Owner
Name field. This information appears alternatively as:
Database[,Owners;Switches]

 or
DDF=DDFPath[|Datapath][,Owners;Switches]

Where Database is the name of a Scalable SQL database. DDFPath is a path to a set of DDF
(Btrieve data dictionary) files. Datapath is the path to the corresponding data files. If omitted,
Datapath defaults to DDFPath. Owners is a comma separated list of names to try when opening
encrypted Btrieve files. If a name contains a comma or space, it must be surrounded by single
quotes. Switches is a semicolon separated list of assignments. Valid switches are:
CREATEDDF=[0|1|2]

Where 0 creates a new DDF file, 1 replaces the existing DDF file, and 2 removes the existing
DDF File.

The CREATEDDF switch is provided primarily for use during initial installation to
allow you to build new DDF files. You should never use this switch for existing
databases.

Database Drivers 288

PROP:MaxStatements

PROP:MaxStatements sets or returns the maximum amount of SQL statements that can be
generated (open) on a single connection. A connection must be active before implementing this
property.
number = file{PROP:MaxStatements} !return allowable
file{PROP:MaxStatements} = 32767 !set allowable

Scalable SQL Accelerator 289

Scalable SQL:Supported Commands and Attributes

File Attributes Supported

 CREATE Y

 DRIVER(filetype [,driver string]) Y

 NAME Y

 ENCRYPT N

 OWNER(password) Y1

 RECLAIM N

 PRE(prefix) Y

 BINDABLE Y

 THREAD Y

 EXTERNAL(member) Y

 DLL([flag]) Y

 OEM N
File Structures Supported

 INDEX Y

 KEY Y

 MEMO N

 BLOB Y

 RECORD Y
Index, Key, Memo Attributes Supported

 BINARY N3

 DUP Y

 NOCASE Y

 OPT N

Database Drivers 290

 PRIMARY Y

 NAME Y

 Ascending Components Y

 Descending Components Y

 Mixed Components Y

Field Attributes Supported

 DIM N

 OVER Y

 NAME Y
File Procedures Supported

 BOF(file) N

 BUFFER(file) Y

 BUILD(file) Y

 BUILD(key) Y

 BUILD(index) Y3

 BUILD(index, components) Y3

 BUILD(index, components, filter) N

 BYTES(file) Y

 CLOSE(file) Y

 COPY(file, new file) N

 CREATE(file) Y

 DUPLICATE(file) Y

 DUPLICATE(key) Y

 EMPTY(file) Y

 EOF(file) N

 FLUSH(file) N

Scalable SQL Accelerator 291

 LOCK(file) N

 NAME(label) Y

 OPEN(file, access mode) Y

 PACK(file) N

 POINTER(file) N

 POINTER(key) N

 POSITION(file) N

 POSITION(key) Y

 RECORDS(file) Y

 RECORDS(key) Y

 REMOVE(file) Y

 RENAME(file, new file) N

 SEND(file, message) Y

 SHARE(file, access mode) Y

 STATUS(file) Y

 STREAM(file) N

 UNLOCK(file) N

Record Access Supported

 ADD(file) Y

 ADD(file, length) N

 APPEND(file) Y

 APPEND(file, length) N

 DELETE(file) Y

 GET(file,key) Y

 GET(file, filepointer) N

 GET(file, filepointer, length) N

 GET(key, keypointer) N

Database Drivers 292

 HOLD(file) N

 NEXT(file) Y

 NOMEMO(file) N

 PREVIOUS(file) Y

 PUT(file) Y

 PUT(file, filepointer) N

 PUT(file, filepointer, length) N

 RELEASE(file) N

 REGET(file,string) N

 REGET(key,string) Y

 RESET(file,string) N

 RESET(key,string) Y

 SET(file) Y

 SET(file, key) N

 SET(file, filepointer) N

 SET(key) Y

 SET(key, key) Y

 SET(key, keypointer) N

 SET(key, key, filepointer) N

 SKIP(file, count) Y

 WATCH(file) Y
Transaction Processing Supported (see Note 2)

 LOGOUT(timeout, file, ..., file) Y4

 COMMIT Y

 ROLLBACK Y
Null Data Processing Supported

 NULL(field) Y

Scalable SQL Accelerator 293

 SETNULL(field) Y

 SETNONNULL(field) Y

Notes:
1 We recommend using a variable password that is lengthy and contains special

characters because this more effectively hides the password value from anyone looking
for it. For example, a password like "dd....#$...*&" is much more difficult to "find" than a
password like "SALARY."

To specify a variable instead of the actual password in the Owner Name field of the
File Properties dialog, type an exclamation point (!) followed by the variable name.
For example: !MyPassword.

2 See also PROP:Logout in the Language Reference.

3 BUILD(index) sets internal driver flags to guarantee the driver generates the correct
ORDER BY clause. The driver does not call the backend server.

4 Whether LOGOUT also LOCKs the table depends on the server's configuration for
transaction processing. See your server documentation.

Database Drivers 294

SQL Anywhere Accelerator 295

SQLAnywhere Accelerator

SQLAnywhere Accelerator Overview

SQLAnywhere Server

For complete information on the SQLAnywhere database system, please review Sybase's
SQLAnywhere documentation.

SQLAnywhere Accelerator

The SQLAnywhere Accelerator is one of several SoftVelocity SQL Accelerators. These SQL
Accelerators share a common code base and many common features such as SoftVelocity's
unique, high speed buffering technology, common driver strings, and SQL logging capability. See
SQL Accelerators for information on these common features.

The SQLAnywhere Accelerator converts standard Clarion file I/O statements and function calls
into optimized SQL statements, which it sends to the backend SQLAnywhere server for
processing. This means you can use the same Clarion code to access both SQLAnywhere tables
and other file systems such as TopSpeed files. It also means you can use Clarion template
generated code with your SQL databases.

All the common behavior of all the SQL Accelerators is documented in the SQL accelerators
section. All behavior specific to this driver is noted here.

Database Drivers 296

Start the SQLAnywhere Client
Clarion's Dictionary Synchronizer Wizard (Enterprise Edition) lets you import an entire
SQLAnywhere database definition into your Clarion Data Dictionary in a single pass. Before you
can connect to the SQLAnywhere database and import table definitions, you must start the
database client software.

Note: Before you can connect to the SQLAnywhere database and import table
definitions, you must start the database client software.

If you have not started the client software, Clarion issues the unable to start database engine
message.

SQL Anywhere Accelerator 297

SQLAnywhere Accelerator SQL Import Wizard--Login Dialog
Clarion's Dictionary Editor Import Wizard lets you import SQLAnywhere table definitions into your
Clarion Data Dictionary. When you select the SQLAnywhere Accelerator from the driver drop-
down list, the Import Wizard opens a login dialog. This dialog collects the connection information
for the SQLAnywhere database.

Fill in the following fields in the Login/Connection dialog:

Database
Select the SQLAnywhere database that contains the tables to
import. If the Database list is empty, you may type in the name.
See your server documentation or your DBA for information on
database names.

Username
For Standard Security, type your MSSQL Username. For Trusted
Security (Integrated NT Security) no Username is required. See
your server documentation or your DBA for information on
applicable Usernames and security methods.

Password
For Standard Security, type your MSSQL Password. For Trusted
Security (Integrated NT Security) no Password is required. See
your server documentation or your DBA for information on
applicable Passwords and security methods.

Filter
Optionally, provide a filter expression to limit the list of tables and
views to import. The filter expression queries the SYSCATALOG
view. The filter expression is limited to 1024 characters in length.

Tip: The filter is case sensitive, so type your filter value accordingly.

 Following is a list of the column names (and their Clarion
datatypes) you can reference in your filter expression. See your
SQLAnywhere documentation for information on these fields.

 CREATOR STRING(128)
TNAME STRING(128)
DBSPACENAME STRING(128)
TABLETYPE STRING(10)
NCOLS LONG
PRIMARY_KEY STRING(1)
CHECK STRING(32767)
REMARKS STRING(32767)

Database Drivers 298

Disconnect from Server when Import is finished
Check this box to disconnect from the server after importing (or
canceling). Generally, you should clear this box when importing
multiple definitions in order to maintain your connection to the
server between imports.

Next >
Press this button to open the Import Wizard's Import List dialog.

SQL Anywhere Accelerator 299

SQLAnywhere Accelerator SQL Import Wizard--Import List Dialog
When you press the Next > button, the Import Wizard opens the Import List dialog. The Import
List dialog lists the importable items.

Highlight the table whose definition to import, then press the Finish button to import. The Import
Wizard adds the definition to your Clarion Data Dictionary, then opens the File Properties dialog
to let you modify the default definition.

Import additional tables by repeating these steps. After all the items are imported, return to the
Dictionary Editor where you can define relationships and delete any columns not used in your
Clarion application. See SQL Accelerators--Define Only the Fields You Use.

Database Drivers 300

SQLAnywhere Accelerator Connection Information

(and Driver Configuration--File Properties)
Typically, you add SQLAnywhere support to your application by importing the table definitions
into your Clarion Data Dictionary. The Import Wizard automatically fills in the File Properties
dialog with default values based on the imported item.

The OWNER attribute for SQLAnywhere Accelerator takes the format:
database,username,password

Tip: Type an exclamation point (!) followed by a variable name in the Owner Name field
of the File Properties dialog to specify a variable connect string rather than hard
coding the connect string (OWNER attribute) . For example: !GLO:ConnectString.

SQL Anywhere Accelerator 301

SQLAnywhere Accelerator Driver Strings
There are switches or "driver strings" you can set to control the way your application creates,
reads, and writes files with a specific driver. Driver strings are simply messages or parameters
that are sent to the file driver at run-time to control its behavior. See Common Driver Features--
Driver Strings for an overview of these runtime Database Driver switches and parameters.

Tip: A forward slash preceeds all SQL Accelerator driver strings. The slash allows the
driver to distinguish between driver strings and SQL statements sent with SEND.

In addition to the standard SQL Driver Strings, the SQLAnywhere Accelerator supports the
following Driver Strings:

Database Drivers 302

LOGONSCREEN (SQLAnywhere Accelerator)

 DRIVER('SQLAnywhere', '/LOGONSCREEN = TRUE | FALSE ')

 [AutoLogon" =] SEND(file, '/LOGONSCREEN [= TRUE | FALSE]')

See Also: PROP:LogonScreen.

GATHERATOPEN (SQLAnywhere Accelerator)
 DRIVER('SQLAnywhere', '/GATHERATOPEN = TRUE | FALSE ')

By default the driver delays gathering field information until it is required. However, some
backends (like Sybase 11) perform poorly under these conditions. Setting GATHERATOPEN to
TRUE forces the driver to gather most of the field information when the file is opened, whihc
avoids a slowdown during program execution.

SQL Anywhere Accelerator 303

SQLAnywhere Accelerator Driver Properties
You can use Clarion's property syntax to query and set certain SQLAnywhere Accelerator driver
properties. In addition to the standard SQL Acclerator properties (see SQL Accelerators--SQL
Accelerator Properties), the SQLAnywhere Accelerator supports the following properties.

PROP:LogonScreen (SQLAnywhere Accelerator)
PROP:LogonScreen sets or returns the toggle that determines whether the driver automatically
prompts for logon information. By default (PROP:LogonScreen=True), the driver does display a
logon window if no connect string is supplied. If set to False and there is no connect string, the
OPEN(file) fails and FILEERRORCODE() returns '28000.' For example:
AFile FILE,DRIVER('SQLAnywhere')
!file declaration with no userid and password

END
CODE
AFile{PROP:LogonScreen}=True !enable auto login screen
OPEN(Afile)

The logon screen is the SQLAnywhere Connect dialog. Consult your SQLAnywhere
documentation for more information on this dialog. The end-user's ability to use the connect
dialog will depend on the security surrounding the SQLAnywhere database. For example, the
end-users may have access rights to a named database (sademo) that they can access with the
SQLAnywhere client software, but they may not have access rights to the *.db files that comprise
the database. The SQLAnywhere connect dialog requires *.db files rather than database name.

Database Drivers 304

Using Embedded SQL(SQLAnywhere Accelerator)
You can use Clarion's property syntax (PROP:SQL) to send SQL statements to the backend SQL
server within the normal execution of your program. See SQL Accelerators--Using Embedded
SQL for more information.

Calling a Stored Procedure (SQLAnywhere Accelerator)
For SQLAnywhere NORESULTCALL is more efficient than CALL.

SQL Anywhere Accelerator 305

SQLAnywhere Accelerator Supported File Commands and Functions

File Attributes Supported

 CREATE Y

 DRIVER(filetype [,driver string]) Y

 NAME Y

 ENCRYPT N

 OWNER(password) Y1

 RECLAIM N

 PRE(prefix) Y

 BINDABLE Y

 THREAD Y

 EXTERNAL(member) Y

 DLL([flag]) Y

 OEM N
File Structures Supported

 INDEX Y

 KEY Y

 MEMO N

 BLOB Y

 RECORD Y
Index, Key, Memo Attributes Supported

 BINARY N3

 DUP Y

 NOCASE Y

 OPT N

 PRIMARY Y

Database Drivers 306

 NAME Y

 Ascending Components Y

 Descending Components Y

 Mixed Components Y
Field Attributes Supported

 DIM N

 OVER Y

 NAME Y
File Procedures Supported

 BOF(file) N

 BUFFER(file) Y

 BUILD(file) Y

 BUILD(key) Y

 BUILD(index) Y3

 BUILD(index, components) Y3

 BUILD(index, components, filter) N

 BYTES(file) Y

 CLOSE(file) Y

 COPY(file, new file) N

 CREATE(file) Y

 DUPLICATE(file) Y

 DUPLICATE(key) Y

 EMPTY(file) Y

 EOF(file) N

 FLUSH(file) N

 LOCK(file) N

 NAME(label) Y

SQL Anywhere Accelerator 307

 OPEN(file, access mode) Y

 PACK(file) N

 POINTER(file) N

 POINTER(key) N

 POSITION(file) N

 POSITION(key) Y

 RECORDS(file) Y

 RECORDS(key) Y

 REMOVE(file) Y

 RENAME(file, new file) N

 SEND(file, message) Y

 SHARE(file, access mode) Y

 STATUS(file) Y

 STREAM(file) N

 UNLOCK(file) N

Record Access Supported

 ADD(file) Y

 ADD(file, length) N

 APPEND(file) Y

 APPEND(file, length) N

 DELETE(file) Y

 GET(file,key) Y

 GET(file, filepointer) N

 GET(file, filepointer, length) N

 GET(key, keypointer) N

 HOLD(file) N

 NEXT(file) Y

Database Drivers 308

 NOMEMO(file) N

 PREVIOUS(file) Y

 PUT(file) Y

 PUT(file, filepointer) N

 PUT(file, filepointer, length) N

 RELEASE(file) N

 REGET(file,string) N

 REGET(key,string) Y

 RESET(file,string) N

 RESET(key,string) Y

 SET(file) Y

 SET(file, key) N

 SET(file, filepointer) N

 SET(key) Y

 SET(key, key) Y

 SET(key, keypointer) N

 SET(key, key, filepointer) N

 SKIP(file, count) Y

 WATCH(file) Y
Transaction Processing Supported (see Note 2)

 LOGOUT(timeout, file, ..., file) Y4

 COMMIT Y

 ROLLBACK Y
Null Data Processing Supported

 NULL(field) Y

 SETNULL(field) Y

 SETNONNULL(field) Y

SQL Anywhere Accelerator 309

Notes:
1 We recommend using a variable password that is lengthy and contains special

characters because this more effectively hides the password value from anyone looking
for it. For example, a password like "dd....#$...*&" is much more difficult to "find" than a
password like "SALARY."

Tip: To specify a variable instead of the actual password in the Owner Name field of the
File Properties dialog, type an exclamation point (!) followed by the variable name.
For example: !MyPassword.

2 See also PROP:Logout in the Language Reference.

3 BUILD(index) sets internal driver flags to guarantee the driver generates the correct
ORDER BY clause. The driver does not call the backend server.

4 Whether LOGOUT also LOCKs the table depends on the server's configuration for
transaction processing. See your server documentation.

SQLAnywhere Accelerator Synchronizer Server
Clarion's Enterprise Edition includes the SQLAnywhere Synchronizer Server and the Data
Dictionary Synchronizer. The Dictionary Synchronizer uses the Synchronizer Server to gather
complete information about an SQLAnywhere database.

The SQLAnywhere Synchronizer Server is one of several used by the Dictionary Synchronizer.
All the common behavior of all the SQL Accelerators is documented in the SQL accelerators
section. All behavior specific to this driver is noted here.

SQLAnywhere Accelerator Synchronizer Login Dialog
Clarion's Dictionary Synchronizer Wizard (Enterprise Edition) lets you import an entire
SQLAnywhere database definition into your Clarion Data Dictionary in a single pass. During this
process, the Synchronizer Wizard opens an SQLAnywhere login dialog. This dialog collects the
connection information for the SQLAnywhere database.

Fill in the following fields in the login dialog:

Database
Select the SQLAnywhere database that contains the tables or
views to import. If the Database list is empty, you may type in
the name. See your server documentation or your DBA for
information on database names.

Database Drivers 310

Username
Type your SQLAnywhere Username. See your server
documentation or your DBA for information on Usernames.

Password
Type your SQLAnywhere Password. See your server
documentation or your DBA for information on Passwords.

Include System Files
Select this option to include system tables in the list of
importable objects.

Exclude System Files
Select this option to exclude system tables from the list of
importable objects.

Other Filter
Select this option to provide a filter expression to limit the list of
tables and views to import. The filter expression queries the
SYSCATALOG view. The filter expression is limited to 1024
characters in length.

Tip: The filter is case sensitive, so type your filter value accordingly.

 Following is a list of the column names (and their Clarion
datatypes) you can reference in your filter expression. See your
SQLAnywhere documentation for information on these fields.

CREATOR STRING(128)
TNAME STRING(128)
DBSPACENAME STRING(128)
TABLETYPE STRING(10)
NCOLS LONG
PRIMARY_KEY STRING(1)
CHECK STRING(32767)
REMARKS STRING(32767)

Index 311

Index:
32-bit applications....................................258
Alias ...195
ALL_CATALOG263
ALLOWDETAILS182
AlwaysRebind..195
APPENDBUFFER182
auto numbered keys267
BINDCOLORDER....................................182
Btrieve

Driver Properties38
C60ORA.DLL...261
Calling a Stored Procedure

SQLAnywher ..308
Calling a Stored Procedure (SQLAnywhere

Accelerator)...308
Calling a xe "Stored Procedures

Oracle"Stored Procedure
Oracle Accelerator............................276

CHECKFORNULL180
Choosing the Right Database Driver...........6
Clipper

Driver Strings ...62
Other ..71

Common Database Driver Features............7
ConnectString..195
Database Drivers...5
Database Name

Scalable SQL214, 313
Scalable SQL228
SQLAnywhere......................................301

dBaseIII
Driver Strings ...78
Other ..87

dBaseIV
Driver Strings ...94
Other ..104

DBMSver ...196
Debugging Your ODBC Application248
Debugging Your SQL Application............173
Details..196
Disconnect ...196
DLL Coding Practices..............................276
DOS

Driver Strings111

Driver Properties
MSSQL...228
SQLAnywhere307

Driver Strings ...10
MSSQL...224
Oracle...269
SQLAnywhere305

Embedded SQL204
Oracle...274

FILTER.................................... 214, 215, 314
FoxPro

Driver Strings120
Other ..129

Future Oracle Releases...........................257
GATHERATOPEN 184, 226, 306
GATHERATOPEN (MSSQL Accelerator)226
General Information for all SQL Drivers ..153
GETINFO...184
hdbc ...198
henv ...198
HINT...225, 270

Oracle...270
hstmt ..198
Import Wizard

Oracle...262, 263
Scalable SQL214
SQLAnywhere301

Importing from ODBC Data Sources245
Inner...198
IPX host ...262, 266
ISOLATIONLEVEL186
JOINTYPE ...187
Key Properties dialog...............................267
local host..266
LogFile ...201
LOGFILE..190
LoginTimeout ...201
logon

MSSQL...228
SQLAnywhere307

LOGON SCREEN....................................271
LogonScreen ...200
LOGONSCREEN

MSSQL...226

Database Drivers 312

LOGONSCREEN (MSSQL Accelerator) .226
LOGONSCREEN (SQLAnywhere

Accelerator)..306
MSSQL

Driver Properties228
Driver Strings224
LOGONSCREEN226
SAVESTOREDPROC226
TRUSTEDCONNECTION....................227

MSSQL Accelerator Calling a Stored
Procedure ..218

MSSQL Accelerator Connection Information
and Driver Configuration--File Properties
...217

MSSQL Accelerator Driver Properties.....228
MSSQL Accelerator Driver Strings..........224
MSSQL Accelerator Overview.................213
MSSQL Accelerator Performance

Considerations218
MSSQL Accelerator SQL Import Wizard--

Import List Dialog216
MSSQL Accelerator SQL Import Wizard--

Login Dialog ...214
MSSQL Accelerator Supported File

Commands and Functions230
MSSQL Accelerator Synchronizer Server

...235
MSSQL Accelerator Using Embedded SQL

...221
MSSQL logon ..228
NORESULTCALL

Oracle...276
ODBC Connection Information and Driver

Configuration--File Properties246
ODBC Data Types...................................244
ODBC Driver Properties255
ODBC Pros and Cons240
ODBC Supported Commands and Attributes

...249
Oracle

auto numbered keys267
sequence numbers267
Unique Key Values267

Oracle Accelerator...................................257
Oracle Accelerator Automatic Login Dialog

...266
Oracle Accelerator Data Types283

Oracle Accelerator Driver Properties.......274
Oracle Accelerator Driver Strings269
Oracle Accelerator Generating Unique Key

Values ..267
Oracle Accelerator Installation.................260
Oracle Accelerator Performance

Considerations265
Oracle Accelerator Supported Commands

and Attributes277
Oracle Accelerator System Requirements

...258
Oracle Accelerator Table Import Wizard—

Import List Dialog265
Oracle Accelerator Table Import Wizard—

Login Dialog ...262
Oracle Accelerator Troubleshooting285
Oracle Accelerator --Using Embedded SQL

...274
Oracle connection....................................262
Oracle CONSTRAINTs262
Oracle Driver Strings269
Oracle hints..270
Oracle indexes...262
Oracle linking fields..................................273
Oracle login..262
Oracle Login Dialog266
Oracle Personal271
Oracle Sequences267
Oracle version..................................258, 259
Oracle versions..257
OrderAllTables ...201
OrderInSelect...202
Password

SQLAnywhere301
PASSWORD..266
PATH

Oracle...258, 259
Performance Considerations159
PERSONAL ...271

Oracle...271
PERSONAL Oracle..................................271
PL/SQL ..275
Profile...202
Prop

Name..169
PROP...225

Alias..195

Index 313

AlwaysRebind195
ConnectString195
DBMSver..196
Details ..196
Disconnect ...196
GroupBy...197
Having171, 172, 197
hdbc ...198
henv ...198
Hint...198, 225

Oracle...198
hstmt ..198
Inner ...198
IsolationLevel199
Log ...200
LogFile ...201
LoginTimeout201
LogonScreen..200

MSSQL.....................................228, 229
SQLAnywhere307

LogonScreen (MSSQL Accelerator)228
LogonScreen (SQLAnywhere Accelerator

) ..307
OrderAllTables201
OrderInSelect202
Profile ...202
QuoteString..202
SQL..203
SQLFilter ..205
SQLJoinExpression206
SQLOrder...207

protocol
local

IPX
TCP/IP ..266

QuoteString ...202
readme...260
Registering the Oracle Accelerator261
Registering the Oracle Driver in Clarion..260
SAVESTOREDPROC

MSSQL...226
SAVESTOREDPROC (MSSQL Accelerator)

...226
Scalable SQL Supported Commands and

Attributes ..293
Setup ...260
SQL..203, 204

SQL Accelerator Drivers
Supported Commands and Attributes..175

SQL Driver Behavior................................157
SQL Driver Strings...................................181
SQL statements

Oracle...257
Scalable SQL213, 299

SQL Views ...169
SQLAnywhere

Driver Properties307
Driver Strings305

SQLAnywhere Accelerator Synchronizer
Server...313

SQLAnywhere Accelerator Connection
Information and Driver Configuration--File
Properties ...304

SQLAnywhere Accelerator Driver Properties
...307

SQLAnywhere Accelerator Driver Strings305
SQLAnywhere Accelerator Overview299
SQLAnywhere Accelerator SQL Import

Wizard--Import List Dialog....................303
SQLAnywhere Accelerator SQL Import

Wizard--Login Dialog............................301
SQLAnywhere Accelerator Supported File

Commands and Functions309
SQLAnywhere Accelerator Synchronizer

Login Dialog ...313
SQLAnywhere logon................................307
SQLFilter..205
SQLJoinExpression206
SQLOrder...207
Start the SQLAnywhere Client.................300
Stored procedures167
TCP/IP host......................................262, 266
TopSpeed Database Recovery Utility......149
TPSFIX Command Line Parameters151
TRUSTEDCONNECTION

MSSQL...227
TRUSTEDCONNECTION (MSSQL

Accelerator) ..227
USEASYNCHRONOUSCALLS272
USEINNERJOIN191
Username 262, 263, 266

SQLAnywhere301
Using Embedded SQL164

Database Drivers 314

Using Embedded SQL(SQLAnywhere
Accelerator)...308

Using SQL Tables in your Clarion
Application ...154

Variable file names
Scalable SQL217, 230, 304, 309

VERIFYVIASELECT................................192

Version...196
Views - SQL...169
WHERE..193

Oracle...273
ZERODATE ...194
ZEROISNULL ..194

	Database Drivers
	Overview - Data Independence

	Choosing the Right Database Driver
	Common Database Driver Features
	Driver Strings
	ISAM/Non-SQL File Drivers
	ASCII File Driver
	Basic Database Driver
	Btrieve Database Driver
	Clarion Database Driver
	Clipper Database Driver
	Clipper:Driver Strings
	Clipper:Other
	dBaseIII Database Driver
	dBaseIII:Driver Strings
	dBaseIII:Other
	dBaseIV Database Driver
	dBaseIV:Driver Strings
	dBaseIV:Other
	DOS Database Driver
	DOS:Driver Strings
	FoxPro / FoxBase Database Driver
	FoxPro:Driver Strings
	FoxPro:Other
	TopSpeed Database Driver
	TopSpeed Database Recovery Utility
	TPSFIX Command Line Parameters

	All SQL Accelerators (Drivers)
	General Information for all SQL Drivers
	Using SQL Tables in your Clarion Application
	SQL Driver Behavior
	Performance Considerations
	Date and Time Column Considerations
	SQL Batch Transaction Processing
	Using Embedded SQL
	Runtime SQL Properties for Views using SQL Drivers
	VIEW support for aggregate functions
	Debugging Your SQL Application
	SQL Accelerator Drivers:Supported Commands and Attributes
	CHECKFORNULL
	SQL Driver Strings(Generic)
	SQL Driver Strings
	ALLOWDETAILS
	APPENDBUFFER
	BINDCOLORDER
	BINDCONSTANTS
	CLIPSTRINGS
	FASTCOLUMNFETCH
	FORCEUPPERCASE
	GATHERATOPEN
	GETINFO
	IGNORETRUNCATION
	ISOLATIONLEVEL
	JOINTYPE
	LOGFILE
	NESTING
	ODBCCALL
	ORDERINSELECT
	USEINNERJOIN
	VERIFYVIASELECT
	WHERE (SQL Driver String)
	ZERODATE
	ZEROISNULL
	SQL Driver Properties(Generic)
	PROP:Alias
	PROP:AlwaysRebind
	PROP:ConnectString
	PROP:DBMSver
	PROP:Details
	PROP:Disconnect
	PROP:GroupBy, PROP:Having
	PROP:hdbc
	PROP:henv
	PROP:Hint
	PROP:hstmt
	PROP:Inner
	PROP:IsolationLevel
	PROP:LogonScreen
	PROP:Log
	PROP:LogFile
	PROP:LoginTimeout
	PROP:OrderAllTables
	PROP:OrderInSelect
	PROP:Profile
	PROP:QuoteString
	PROP:SQL
	PROP:SQLFilter
	PROP:SQLJoinExpression
	PROP:SQLOrder
	ADO Database Driver
	What is ADO?
	ADO Requirements
	ADO Logging
	MSSQL Accelerator
	MSSQL Accelerator Overview
	MSSQL Accelerator SQL Import Wizard--Login Dialog
	MSSQL Accelerator SQL Import Wizard--Import List Dialog
	MSSQL Accelerator Connection Information
	MSSQL Accelerator Performance Considerations
	MSSQL Accelerator Calling a Stored Procedure
	MSSQL Accelerator Using Embedded SQL
	MSSQL Accelerator Driver Strings
	HINT
	LOGONSCREEN (MSSQL Accelerator)
	GATHERATOPEN (MSSQL Accelerator)
	SAVESTOREDPROC (MSSQL Accelerator)
	TRUSTEDCONNECTION (MSSQL Accelerator)
	MSSQL Accelerator Driver Properties
	PROP:LogonScreen (MSSQL Accelerator)
	MSSQL Accelerator Supported File Commands and Functions
	MSSQL Accelerator Synchronizer Server
	ODBC Accelerator Driver
	ODBC:Overview
	What is ODBC?
	ODBC Pros and Cons
	ODBC Data Types
	Importing from ODBC Data Sources
	ODBC Connection Information and Driver Configuration--File Properties
	Debugging Your ODBC Application
	ODBC:Supported Commands and Attributes
	ODBC:Driver Strings
	ODBC:Driver Properties
	Microsoft Access and ODBC
	Oracle Accelerator
	Overview
	Oracle Accelerator System Requirements
	Oracle Accelerator Installation
	Registering the Oracle Accelerator
	Oracle Accelerator Table Import Wizard--Login Dialog
	Oracle Accelerator Table Import Wizard--Import List Dialog
	Oracle Accelerator Performance Considerations
	Oracle Accelerator Automatic Login Dialog
	Oracle Accelerator Generating Unique Key Values
	Oracle Accelerator Driver Strings
	HINT
	LOGON SCREEN
	PERSONAL
	USEASYNCHRONOUSCALLS
	WHERE
	Oracle Accelerator Driver Properties
	Oracle Accelerator--Using Embedded SQL
	PL/SQL
	Calling a Stored Procedure:Oracle Accelerator
	DLL Coding Practices
	Oracle Accelerator Supported Commands and Attributes
	Oracle Accelerator Data Types
	Oracle Accelerator Troubleshooting
	Scalable SQL Accelerator Driver
	Scalable SQL Overview
	Scalable SQL:Supported Commands and Attributes
	SQLAnywhere Accelerator
	SQLAnywhere Accelerator Overview
	Start the SQLAnywhere Client
	SQLAnywhere Accelerator SQL Import Wizard--Login Dialog
	SQLAnywhere Accelerator SQL Import Wizard--Import List Dialog
	SQLAnywhere Accelerator Connection Information
	SQLAnywhere Accelerator Driver Strings
	LOGONSCREEN (SQLAnywhere Accelerator)
	GATHERATOPEN (SQLAnywhere Accelerator)
	SQLAnywhere Accelerator Driver Properties
	PROP:LogonScreen (SQLAnywhere Accelerator)
	Using Embedded SQL(SQLAnywhere Accelerator)
	Calling a Stored Procedure (SQLAnywhere Accelerator)
	SQLAnywhere Accelerator Supported File Commands and Functions
	SQLAnywhere Accelerator Synchronizer Server
	SQLAnywhere Accelerator Synchronizer Login Dialog

	Index

